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Abstract

High-fidelity modeling and simulation has become indispensable across many en-
gineering applications as it provides physically realistic responses to engineered
systems that would otherwise require costly experiments. However, as we rely
more and more on such simulations, we must imbue them with very high lev-
els of fidelity to make decisions with them. The model order reduction (MOR)
technique has garnered attention since it has enabled the feasibility of rapid sim-
ulations, real-time assessment, and control.

This thesis studies reduction in nonlinear dynamical systems via system theo-
retic methods. Notably, we seek to replace large-scale discretized models emerging
from the time-dependent nonlinear partial differential equations (PDEs) with com-
putationally cheaper models crafted to control the loss of fidelity during reduction.
We start by introducing the problem pervasive in large-scale modeling regimes.
We build upon the idea of the existing generalization of moment-matching to
nonlinear systems based on steady-state considerations. A connection between
the linear and nonlinear enhancements of moment-matching allows extracting re-
duced models in a snapshot-free architecture that drastically reduces the complex-
ity bottleneck in nonlinear MOR. Towards this direction, we propose some effi-
cient reduction methods for nonlinear state-space models based on approximate
moment-matching. The resulting schemes are extensively discussed and tested on
various benchmark nonlinear models. We also discuss the application of proposed
frameworks to nonlinear second-order systems.

In the realm of parameterized nonlinear PDEs, where the model parameter
guarantees the existence of several distinct dynamical regimes, we capitalize on
the fact that smooth parametric dependence allows building low-rank approxi-
mation models that capture the true response over a wide range of parameters
via interpolation. This idea is motivated by design-based strategies prevalent in
the industry; the cost associated with constructing ROMs for different parame-
ter values should be amortized by reusing them in the interpolation process. We
demonstrate this idea through several benchmark examples.

Towards the end of the thesis, we focus on adaptive parameter sampling strate-
gies and show how subspace angles could be used to extract meaningful infor-
mation for remeshing the parametric domain of interest. This is again demon-
strated on various examples from circuits and MEMS. We also provide some source
codes/simulation files to promote transparency and reproducibility.

iii
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Chapter 1

Introduction and Rationale of the
study

1.1 Motivation for reduced-order modeling paradigm

Understanding physical and artificial processes is of fundamental interest among
all branches of engineering and contemporary sciences. While the governing phys-
ical laws of such models are mainly described by mathematical equations, the
model complexity remains a central challenge. Among them is the dimension of
the problem. The “large-scale” nature of dynamical systems often leads to the
over-burdening of computational resources and can become impractical at times.
Large scale systems (LSS) arise in various technical systems having a large number
of individual subsystems or components, such as in integrated circuits, VLSI sys-
tems [201, 291, 197], gas and grid networks. Furthermore, large-scale models also
appear as a result of the mathematical treatment of various engineered systems. A
good example is the spatial discretization of partial differential equations (PDEs)
describing the underlying physics. A fine discretization over the 2D/3D geometric
domain via the finite-difference method (FDM), finite element method (FEM), or
the finite-volume method (FVM) can lead to a model of dimension n ≈ 106. This
is a common practice in computational mechanics or fluid mechanics [246]. In
addition, disease modeling, weather predictions, biological models, micro-electro-
mechanical systems (MEMS), chemical processes, computational aerodynamics,
neuroscience, cardiovascular systems, air-quality data assimilation, molecular dy-
namic systems, optimal cooling, etc., represent areas where large-scale models are
pervasive.

During a simulation, one intends to predict or analyze the behavior of a system
under study. As far as large-scale models are concerned, their simulation is not
feasible as thousands or even millions of degrees of freedom are involved. Using
conventional numerical techniques to simulate such systems involves thousands of
core hours which can incur substantial computational costs. Highly accurate so-
lutions demand even more distinguished resolution discretization methods, which

2
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further compounds the complexity of these models. Furthermore, various engi-
neering applications require repeated simulations for different design parameters
of the system. This can very well become problematic if large-scale models are
involved and hence prevent fast-turnaround designs.

Similar issues occur in optimization and control. In control, one seeks to
modify the system’s behavior to meet certain desired performances specifications.
Such modification involves interconnecting the original model with a “controller”
to meet the control design. Generically, the complexity of the controller is ap-
proximately the same as that of the original plant. If the latter is too complex, it
increases the potential burden on the controller in terms of storage, accuracy (due
to ill-conditioning), and computational speed (due to limited bandwidth) [14].

Uncertainty quantification is another area where similar difficulties occur. Un-
certainties can arise from model inputs, including physical parameters represent-
ing material properties, initial or boundary conditions. Various mathematical
problems are encountered in solving forward or inverse uncertainty quantification
problems involving high-dimensional coupled uncertainties and quickly makes the
task intractable [81].

Apart from the issues mentioned above, a numerical constraint that has been
there for a long time and is still a problem of concern is what is known as the curse
of dimensionality. It refers to the problem wherein the space of possible parameter
value sets grows exponentially with the number of unknown parameters.

All of the these factors have motivated researchers to go for reduced modeling
strategies which have now become a de-facto tool to treat large-scale dynamical
systems. Generally speaking, MOR methods aim to construct lower-order, parsi-
monious models that mimic the behavior of the original models while being com-
putationally tractable to handle. This reduces the computational complexity and
time consumed to solve large-scale engineering models. The sense of “dimension-
reduction” or “complexity-reduction” stems from the idea that complex dynamical
systems are often sparse in a relatively small subset of the whole space. Thus, if
n is the size or dimension of the original problem, the solution space can be ap-
proximated by an r (r << n) dimensional subspace (or slow-manifold) where the
sparse dynamics is embedded [14].

There are different approaches for reduced-order modeling. The first and fore-
most is to simplify the model geometry by representing the original model as a
lumped-parameter model. This is achieved by making certain assumptions about
the system or judiciously neglecting some effects. This technique, though is rela-
tively simple, usually leads to an inaccurate reduced-order model (ROM). A dif-
ferent approach is to reduce the finite-element order (i.e., to use a coarser mesh),
leading to a reduced set of equations by exploiting specific geometrical properties
of the system. However, the speedup achieved is limited by the asymptotic range
of convergence of the discretization method. A third option is to capture all phys-
ical effects of the original system by employing a fine discretization mesh and then
apply MOR methods to full-order models (FOMs). In this thesis, we focus on the
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third reduced modeling strategy.
The advantages of using a reduced model against the full model are appar-

ent. In design optimizations and “what-if” scenarios, reduced models provide a
considerable speedup of the simulation than the original model. This is especially
beneficial in real-time applications such as control, digital twins, or predictive
maintenance. In analog circuits, involving millions of transistors, ROMs can re-
place original sub-circuits to obtain a smaller set of equations and hence reduced
computational effort. Reduced models are also used to estimate higher-level per-
formance matrices of an extensive network. For example, device-level PDE simula-
tions are carried out to capture the nonlinear behavior of transistors for aggressive
memory designs. This often results in a large-scale system of ordinary-differential
equations (ODEs) to solve. MOR techniques are then used to access circuit per-
formances such as a memory cell’s read/write access time. Furthermore, ROMs
also help to better understand nonlinear phenomena. Nonlinear effects such as
bifurcation or chaos can be applied in a low-dimensional framework to provide
practical intuition of how large-scale nonlinear systems behave.

The following points highlight the common goals of reduced-order modeling
techniques:

1. The reduced-model should very well approximate the response of the full-
order model. This means that if the same input is applied to both the sys-
tems, the difference between the actual and approximated output responses
should be small for a physically relevant norm over a wide range of inputs.

2. The cost of obtaining the reduced model should be less than performing the
analysis via the full-order model.

3. Important system properties like stability and passivity should be preserved
in reduced models.

4. Reduced order model should preserve critical system structures of the orig-
inal model. This can include parameter dependence and second-order or
time-delay structures.

5. Reduction schemes should be scalable, i.e., applicable to much larger sys-
tems, and provide an upper bound for the error.

6. Reduced modeling strategies should be robust and largely automatic to allow
applicability in complex settings.

Although it is challenging to meet all the requirements mentioned above, especially
in nonlinear dynamical systems, it is certainly possible to meet some.

1.2 Challenges in nonlinear model reduction

Most of the real-life and practical systems are nonlinear in nature. In electronic
and circuit theory, nonlinearities arise from nonlinear resistors, transistors, diodes,



1.2. Challenges in nonlinear model reduction 5

or magnetic inductors [14, 19]. The swing dynamics of alternators is nonlinear in
nature. In mechanical applications, thin structures such as beams, plates, and
shells undergoing large amplitude vibrations show geometric nonlinearities be-
cause of their relatively low bending stiffness. In fluid dynamics and heat transfer,
nonlinear behavior is observed due to turbulence, convective acceleration, or radi-
ation. Besides, nonlinear dynamics may arise in many technically relevant systems
via nonlinear boundary conditions (e.g., contact interactions) or material nonlin-
earities (e.g., plasticity, nonlinear piezoelectricity, hyper-elasticity).

Nonlinear systems pose many practical challenges for simulation or reduction,
which are highlighted as follows:

1. Nonlinear systems usually lack a closed-form solution. This implies that
the input-output relationship cannot be analytically expressed via transfer
functions or via convolution integrals. Moreover, nonlinear systems exhibit
strong and complex behaviors such as bifurcation (e.g., jump phenomenon
[214, 171]), several attractors (e.g., stable/unstable/limit-cycles), chaotic
behavior, and multiple equilibrium points. This makes nonlinear systems
harder to analyze and manipulate than linear systems.

2. Nonlinear dynamical systems also lack a canonical form structure of the
reduced model. As a result, an efficient representation of the nonlinear
system or its reduced model becomes highly inefficient. This is in contrast
with linear time-invariant (LTI) systems which can be represented by several
matrices A,B,C, and D.

3. There is a limited guarantee of the behavior of the reduced nonlinear model,
i.e., the reduced model is expressed locally or for a given training data.

4. Reduction of nonlinear dynamical systems results in the reduction of only the
state-vector dynamics. The nonlinear function still remains in the original
high-dimensional space. This requires different hyper-reduction techniques
“on-top-of ” dimension reduction methods to effectively approximate the
nonlinear inner-products.

5. Due to the lack of practical system-theoretic measures and analytical solu-
tions, nonlinear systems are typically reduced in a “simulation-based” frame-
work. Conventional nonlinear MOR methods such as proper orthogonal
decomposition (POD) [306], trajectory piece-wise linear method (TPWL)
[249, 250], empirical grammians [178, 179] or the reduced-basis method
[236, 251] rely on taking expensive temporal measurements of the system
to obtain the orthonormal basis for the reduced system. This imposes an
enormous computational burden, especially when several simulation runs are
required for different system parameters or training inputs.
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1.3 Thesis objectives

This thesis focuses on “simulation-free” or system-theoretic methods for the re-
duction of large-scale nonlinear dynamical systems. MOR for linear systems is
well explored, and several decent algorithms are available at our disposal. Thus,
the goal of this thesis will be to explore the possibility of extending the already
established MOR methods for linear systems to the nonlinear systems, and also
develop novel frameworks that are better suited for a general class of nonlinear
systems. The main objectives of the thesis are enlisted as follows:

1. The first and foremost goal will be to get insight into some famous nonlinear
MOR (NMOR) methods like POD, TPWL, moment-matching, etc. With
this, we will present some of the shortcomings of these methods, and based
upon that, propose some novel NMOR frameworks that improve/enhance
the current state-of-the-art methods. The central aim will be to enhance
the simulation speeds or the large CPU core-hours associated while reduc-
ing large-scale nonlinear systems. For this, we will focus on using system-
theoretic measures to improve both the offline and online CPU times in-
volved. We will demonstrate the proposed frameworks on several nonlinear
benchmark systems.

2. Another aim would be to reduce nonlinear systems in the second-order form.
In this regard, we will focus on developing efficient reduction schemes that
would preserve the structure of the original model. The reduced model, thus
obtained, will be of the same form as that the original model to maintain
the physical interpretation of the state variables. We will demonstrate the
proposed methods on large-scale power system models. Unlike the common
practice of linearizing the external area of the power system, we will focus on
using nonlinear methods directly to effectively capture the nonlinear swing
dynamics of power systems models.

3. Another central subject of concern in this thesis is the reduction of standard
nonlinear systems having parametric dependencies. Since the traditional
NMOR methods are not robust to parametric variation, thus these tech-
niques cannot be applied directly to such models. As such, we will focus on
developing novel parametric MOR (PMOR) methods in this direction.

4. The final objective of the thesis will be to develop efficient parametric sam-
pling strategies for PMOR. This would involve developing system-theoretic
methods in which the information extracted from the governing model will
guide the selection of sampling points in the parametric domains. The result
of adaptive sampling will enhance the approximation qualities of the reduced
models while avoiding oversampling scenarios.
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1.4 Scientific contributions

The main contributions of this thesis are highlighted as follows:

1. An accurate and low-cost projection framework is developed in Chapter 4
called the nonlinear moment-matching with discrete empirical interpolation
method (NLMM-DEIM). The framework is used to obtain reduced models
by solving the underlying Sylvester PDE after approximating it to nonlinear
algebraic system using some numerical simplifications. The expensive cost
of evaluating the nonlinear terms is reduced by using DEIM as a hyper-
reduction method. The proposed scheme is implemented on several nonlinear
benchmark models.

2. Again in Chapter 4, another reduction framework called NLMM-DMD is
presented, by using NLMM with dynamic mode decomposition (DMD).
The algorithm generates compact ROMs in a non-intrusive fashion. This is
achieved by approximating the nonlinear function using the infinite dimen-
sional Koopman operator by generating low-dimensional spatio-temporal
modes of evolution.

3. In Chapter 5, the intrusive and non-intrusive MOR scheme based on NLMM-
DMD is used to obtain a simulation-free reduction for power system models.
Unlike the conventional linearization of external area of a power system
model, we consider the nonlinear effective network (EN) and the synchronous
motor (SM) power grid models. The results are substantiated using the
reduced EN and SM models of the IEEE 118 and IEEE 300 bus systems for
realistic fault situations. The numerical simulations are implemented in the
MATLAB environment and the source codes are provided.

4. In the context of nonlinear models in second-order form, a numerical al-
gorithm is presented in Chapter 5. The algorithm is called second-order
moment-matching with discrete empirical interpolation method (SO-NLMM-
DEIM) and is able to construct ROMs that preserve the second-order struc-
ture of the problem. The MATLAB implementation of SO-NLMM-DEIM is
provided for reusability.

5. In the context of parametric nonlinear MOR, a numerical scheme is devised
that constructs parametric ROMs by interpolating the neighboring reduced
models obtained at regular intervals in the parameter space. In the scheme,
we employ NLMM-DEIM to generate a pool of reduced coordinates and then
transform each of them on a universal subspace for a meaningful interpo-
lation. The numerical framework is demonstrated on a suite of nonlinear
parametric systems in Chapter 6.

6. The matrix interpolatory framework for nonlinear systems is further mod-
ified in Chapter 7, and an adaptive sampling scheme is devised that uses
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the information from principal angles of reduced subspaces to find optimal
number of parametric samples for interpolation. The upfront offline cost of
generating the training data is then amortized by the savings achieved by
interpolation in online stage.

1.5 Outline of thesis

This thesis is divided into four parts. Part I discusses the preliminaries for the
thesis and covers Chapters 1, and 2. After the introduction in Chapter 1, we
begin with some mathematical preliminaries in Chapter 2 needed for the rest
of the chapters. Therein, we discuss the projection-based technique to obtain
ROM architecture in linear systems. We also present an overview of various linear
MOR schemes and highlight the similarities and differences among various meth-
ods. Then, we describe the reduction via moment-matching in both time and
frequency domain settings. Towards the end, we discuss some open issues and
recent advancements in linear moment-matching.

Part II is dedicated to nonlinear state-space systems and covers Chapters 3, 4,
and 5. In Chapter 3, we begin with the projection-based reduction of a general
class of nonlinear systems. Therein, we discuss the linear and nonlinear Galerkin
projection techniques to obtain nonlinear reduced models. We also provide a
review of some of the famous nonlinear MOR methods. Then, we lay focus on
the notion of nonlinear moment-matching via steady-state response matching. We
describe the general methodology via theorems and diagrams. Finally, we discuss
the hyper-reduction in nonlinear systems along-with some open issues in nonlinear
MOR. In Chapter 4, we discuss the approximated NLMM by describing certain
numerical simplification of the Sylvester PDE to arrive at a practical algorithm
used to extract the basis for reduced subspace. Then, we propose two efficient
reduction frameworks based on NLMM: (i) NLMM-DEIM, and (ii) NLMM-DMD.
The former is inspired by POD-DEIM and avoids the expensive measurements
needed in POD, while the latter is used to replace DEIM in a non-intrusive fashion.
Both the schemes are validated and tested on several benchmark nonlinear systems
and compared with POD and DEIM for reference. In Chapter 5, we discuss
nonlinear state-systems models in second-order form. Therein, we first revisit the
reduction of linear second-order models based on second-order Krylov methods.
Then, we propose another reduction framework, i.e., SO-NLMM-DEIM, which is
used to preserve the second-order structure in the reduced models. The scheme
is then tested on a variety of second-order nonlinear models emerging from power
systems. The results are compared with POD for reference.

Part III is devoted to reduction of nonlinear parametric state-space models
and covers Chapters 6 and 7. We begin with the problem of parametric MOR for
nonlinear systems in Chapter 6. Therein, we present a review of parametric MOR
schemes, and afterward, we propose a nonlinear pMOR reduction framework using
the matrix interpolatory framework, which is an extension of the matrix interpo-
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latory method for linear systems. We then test the scheme on several parametric
nonlinear models. Towards the end, we discuss some aspects of the scheme and
mention some limitations for future research. In Chapter 7, we discuss one of the
most concerning aspects in pMOR. i.e., the adaptive sampling of parametric space.
We start with a general introduction of the topic and provide a review of avail-
able techniques. Then, we describe how subspace angles can be used to extract
meaningful information that helps to resample the parametric domains for better
quality ROMs. The methodology is presented for a two-dimensional parametric
system, and a numerical algorithm is described that performs the adaptive search.
The algorithm is tested on a suite of parametric nonlinear models emerging from
circuit theory and MEMS.

The final Part IV completes the thesis with Chapter 8 describing the sum-
mary of work carried and highlighting the conclusions from each chapter along
with an outlook for some future perspectives in the area of nonlinear model order
reduction.



Chapter 2

Fundamentals & Review of Linear
Model Order Reduction

2.1 Mathematical preliminaries

In the following, we describe some important mathematical fundamentals required
for the rest of the thesis.

2.1.1 Projection

Most of the MOR schemes are employed via projection i.e., the dynamics of the
FOM is projected onto a low-dimensional manifold. This enforces the higher-order
dynamics of the FOM to evolve in a subspace which is much lower than the original
model. In the following, we discuss some important key observations regarding
projection from Refs.[204, 254, 152].

Definition 2.1 (Projector) A matrix P ∈ Rn×n is called a projector if the linear
mapping from Rn to itself is idempotent 1 ▲

Using this definition, a few properties follow which are:

(a) If P is a projector onto V , then P is the identity operator on V , i.e., Px =
x, ∀ x ∈ V .

(b) If ran(P) = V , then P is said to the projector onto the subspace ran(V) = V .

(c) The complementary projector of P is given as P⊥ = I−P.

(d) ker(P)=ran(I−P) =W⊥ is called the orthogonal complement of ran(W) =
W .

1A matrix P is idempotent if P2 = P

10
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In order to project x ∈ Rn onto the r-dimensional subspace V spanned by the
columns of V ∈ Rn×r, the projection is performed along the vector ϵ which is
orthogonal to subspace W spanned by columns of matrix W ∈ Rn×r (cf. Fig.
2.1). The projected vector xproj ∈ V is given by the linear combination of the
basis vectors v1,v2, ...,vr, i.e.,

xproj =
r∑

i=1

vici = Vc, (2.1)

where c is the vector of unknown coefficients. From Fig. 2.1, we observe that

x = xproj + ϵ =⇒ ϵ = x− xproj, (2.2)

and the columns of W are orthogonal to ϵ, i.e., WTϵ = 0, as such, we have:

WTϵ = WTx−WTxproj = WTx−WTVc = 0, (2.3)

which when solved for c gives:

c = (WTV)−1WTx. (2.4)

Finally, substituting (2.4) in (2.1) yields the projection xproj given as:

xproj = Vc = V(WTV)−1WT︸ ︷︷ ︸
P

x = Px. (2.5)

V

Wx

xproj

ϵ

Figure 2.1: Projection of x onto xproj ∈ V along ϵ ∈ W⊥
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Definition 2.2 (Orthogonal Projector) A projection P is called orthogonal,
if null(P)=ran(P)⊥ otherwise oblique. Thus, an orthogonal projector is defined
thorough the following requirements:

Px ∈ V and (I−P)x ⊥ V . (2.6)

▲

For the case of an orthogonal projection, the subspace W = V (cf. Fig 2.1).

Remark 2.1 (Orthogonal Projectors) A projector is orthogonal if and only
if it is Hermitian, i.e., P = PH

The following are the properties of orthogonal projectors:

(a)
∥∥x∥∥2

2
=
∥∥Px

∥∥2
2
+
∥∥(I−P)x

∥∥2
2

(b)
∥∥Px

∥∥
2
≤
∥∥x∥∥

2

(c)
∥∥P∥∥

2
= 1

(d) Any orthogonal projector has only two eigenvalues: zero or one.

2.1.2 Singular Value Decomposition (SVD)

The singular value decomposition is one of the most critical matrix decomposi-
tion tools of the computational era, providing a foundation for nearly all of the
reduction methods presented in this thesis. The SVD method is guaranteed to
exist and can be used for various purposes. In the context of the MOR, SVD is
used as an underlying algorithm of principal component analysis (PCA) to extract
low-rank approximations from time-displaced snapshot data obtained from mod-
els. SVD will provide a foundation for many MOR frameworks presented in this
thesis. Generally, we are interested in analyzing a large data set X ∈ Cn×ns given
as:

X =

 x1 x2 · · · xns

 , (2.7)

where the columns xi ∈ Cn can be measurements from an experiment or simu-
lations. The column vectors may also represent the state of a physical system
evolving in time, e.g., fluid velocity, state of a weather simulation, a set of neural
measurements, etc. The columns of X are often known as snapshots, and ns is the
number of snapshots. Typically, n >> m which results in a tall-skinny matrix.

Definition 2.3 (Singular Value Decomposition) Given a matrixX ∈ Cn×ns ,
the SVD is defined as:

X = UΣV∗, (2.8)
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Û

Σ̂ V∗

Economy SVD

Full SVD

X Û Û⊥

Σ̂

0

V∗

ΣU

Figure 2.2: Schematic of matrices in the full and economy SVD [64]

where Σ ∈ Cn×ns is a diagonal matrix with real, non-negative diagonal entries,
and U ∈ Cn×n,V ∈ Cns×ns are unitary matrices 2 with orthonormal columns. ▲
When n ≥ ns, the matrix Σ has at most ns non-zero entries on the diagonal,

and is often written as Σ =

[
Σ̂
0

]
. Thus, an economy version of the SVD can be

obtained as follows:

X = UΣV∗ =
[
Û Û⊥

] [
Σ̂
0

]
V∗ = ÛΣ̂V∗, (2.9)

where Û, Û⊥ have r, n − r columns. The columns of Û⊥ span a vector space
which is orthogonal and complementary to that spanned by Û. Furthermore, the
columns of U are the left singular vectors of X, and the columns of V are the
right singular vectors. The diagonal entries of Σ̂ are known as the singular values
σi {i = 1, .., n} of X, and are ordered from largest to smallest. The schematic for
full and economic version of the SVD method are presented in Fig. 2.2.

Remark 2.2 (SVD) These singular values are eigenvectors of XX∗ and X∗X
respectively. It readily follows that

Xvi = σiui i = 1, ..., n. (2.10)

2A square matrix U is unitary if U∗U = I
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The SVD has certain important properties, which are stated as follows.

(a) Rank X = r.

(b) The orthogonal projection onto the span of columns of X is ÛÛ⊥.

(c) The orthogonal projection onto the kernel of X∗ is In − ÛÛ∗.

(d) The Frobenius norm of X is
∥∥X∥∥

F
=
√
σ2
1 + ...+ σ2

n.

Perhaps the most important property of SVD is that it gives an optimal low-rank
approximation to a matrix X which is given by the Schmidt-Eckart-Young-Mirsky
theorem as follows:

Theorem 2.1 (Schmidt-Eckart-Young-Mirsky) [98] The optimal rank-r ap-
proximation to X, in a least-square sense, is given:

argmin
X̃, s.t. rank(X̃)=r

∥∥X− X̃
∥∥
F
= ŨΣ̃Ṽ

∗
, (2.11)

▲

where Σ̃ contains the leading r × r sub-block of Σ and Ũ, Ṽ represent the first
r leading columns of U and V respectively. Since Σ is diagonal, the rank r SVD
approximation is written as the dyadic summation of r distinct rank-1 matrices
as follows:

X̃ =
∑r

i=1
σiuiv

∗
i = σ1u1v

∗
1 + σ2u2v

∗
2 + ...+ σrurv

∗
r . (2.12)

Thus, the high-dimensional matrix X can be described by a few dominant patters
given by the columns of Ũ and Ṽ. This has the benefit of reducing the size
and dimension of large data sets, yielding a tractable basis for visualization and
analysis. The use of SVD in this thesis can found in Sec. 4.1.2, 4.3.1, 5.3, and
Sec. 6.3.

2.1.3 Krylov subspaces

In this thesis, we are mainly concerned with employing projections onto so-called
Krylov subspaces. These are named after the Russian mathematician A. N. Krylov,
who introduced it in 1931 for the computation of characteristic polynomial of a
matrix. Herein we describe the different types of Krylov subspaces:

A. Classical Krylov subspace:

Definition 2.4 (Classical Krylov subspace) Given a matrix A ∈ Rn×n

and a starting vector b ∈ Rn, the r-order Krylov subspace, denoted as
Kr(A,b), is defined as:

Kr(A,b) = span{b,Ab,A2b, ...,Ar−1b}. (2.13)
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If the r vectors are linearly independent, then they form a r-dimensional
basis V = ran(V) ⊂ Kr(A,b) with the basis matrix as V ∈ Rn×r. In
control system community, the Krylov subspaces are known as reachability
or controllability subspaces. ▲

In practice, the powers of A are computed iteratively from the previous
ones by setting v0 = b,vl = Avl−1, l = 1, 2, ...r − 1, with a subsequent
orthogonalization at every iteration using a Gram-Schmidt process. The
most common implementations are the Lanczos [180] method and the Arnoldi
iteration [22].

B. Rational Krylov subspace:
Proposed by Ruhe [253], the rational Krylov subspaces are used to obtain
shifted versions of the classical Krylov subspaces.

Definition 2.5 (Block rational Krylov subspaces) Given the matrices
E,A ∈ Rn×n,B ∈ Rn×m, and the interpolation point σ ∈ C (σ /∈ λ(E−1A)),
the r-order block rational Krylov subspace Kr(A

−1
σ E,A−1

σ B) is defined as:

Kr(A
−1
σ E,A−1

σ B) = span{A−1
σ B,A−1

σ EA−1
σ B, ..., (A−1

σ E)r−1A−1
σ B}, (2.14)

where Aσ = (σE−A)−1. ▲

A key advantage of Krylov subspaces is that an orthonormal basis V can
be constructed that will span the union of several Krylov subspaces. For
instance, the following projection basis V, with:

Ran(V) ⊆ span{E−1B, ..., (E−1A)r−1E−1B,A−1B, ..., (A−1E)r−1A−1B},
(2.15)

is obtained as the the union of rational Krylov subspaces Kr(E
−1A,E−1B)∪

Kr(A
−1E,A−1B) for σ =∞ and σ = 0. This extended version of the Krylov

subspace is referred as Krylov-Plus-Inverted-Krylov (KPIK) .

Another possibility is to obtain different shifts σi, i = 1, ..., q with respective
multiplicities ri. As such, the union of Krylov subspaces Kr1(A

−1
σ1
E,A−1

σ1
B)∪

...∪Krq(A
−1
σq
E,A−1

σq
B) leads to the blockmultipoint rational Krylov subspace

given as:

Ran(V) ⊆ span{A−1
σ1
B, ..., (A−1

σ1
E)r1−1A−1

σ1
B, ...,A−1

σq
B, ..., (A−1

σq
E)rq−1A−1

σq
B},

(2.16)

where the matrix Aσi
= (σiE−A).
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C. Tangential Krylov subspace:
A drawback of the block Krylov subspaces is that at every new step, the
basis grows by m. In order to suppress the fast growth of dimension, one
can choose a single tangential direction w ∈ Cm and then apply the vector
Bw. The result will be that the number of new columns per iteration will
be reduced to one. Furthermore, it is also possible to select one tangen-
tial direction {wi}qi=1 for each shift {σi}qi=1 leading to tangential multipoint
Krylov subspace given as:

Ran(V) ⊆ span{A−1
σ1
Bw1,A

−1
σ2
Bw2, ...,A

−1
σq
Bwq}. (2.17)

The tangential Krylov subspaces constitute a very general representation,
since the choice of wi = Im leads to a block Krylov subspace and for m = 1
simplifies to B→ b and wi = 1.

Remark 2.3 (Output Krylov subspaces) By replacing A → AT ,E →
ET and B→ CT , the dual counterparts for all stated Krylov subspaces can
be obtained. These are also known as output Krylov subspaces ▲

Krylov subspaces are extensively used in the linear algebra community for:

(a) Iterative solution of linear system Ax = b: Based on the fact that
the successive approximations of x belong to the Krylov subspace K(),
both Arnoldi and Lanczos algorithms are used to iteratively construct
orthonormal basis of these subspaces.

(b) Iterative computation of eigenvalues of A: The simplest approach is by
using the power method whereby, the successive terms Ak−1b are com-
puted for a given b. However, due to slow convergence, Krylov subspace
methods are used where at the kth step, the information contained in
b,Ab, ...,Ak−1b is used [184, 275].

(c) Approximation of linear systems by moment-matching : This is the
problem of interest in this thesis and is discussed in detail.

2.1.4 Error measures

Throughout this thesis, we will use certain error margins to access the quantitative
comparison of the reduced models with the original model. As such, we describe
herein the quantitative analysis of ROMs in the time-domain, which is mainly
employed in the context of nonlinear dynamical systems. For linear systems, the
error is usually measured in frequency-domain using transfer functions of FOMs
and ROMs. Based on the specific application, the accuracy of ROMs can be
measured in terms of whole state vector x(t) or through some specific measurement
vector y(t).
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A. Norm-wise error measure
For a norm-wiser error evaluation, the simulated data is collected and eval-
uated as matrices, i.e. x ∈ Rn×ns ,xr ∈ Rr×ns and y,yr ∈ Rp×ns . Now,
depending upon the type of norm used, the relative errors for various reduc-
tion methods “red” can be obtained norm-wise as follows:

eredx,rel(∗) =

∥∥x−Vxred
r

∥∥
(∗)∥∥x∥∥

(∗)
, eredy,rel(∗) =

∥∥y − yred
r

∥∥
(∗)∥∥y∥∥

(∗)
, (2.18)

where any desired matrix norm (∗) ∈ {1, 2,∞,F} can be used. Additionally,
the norm-wise error can also be measured in time using a desired signal norm
Lp ∈ {L1,L2,L∞} as follows:

eredx,rel,Lp
=

∥∥x−Vxred
r

∥∥
Lp∥∥x∥∥Lp

, eredy,rel,Lp
=

∥∥y − yred
r

∥∥
Lp∥∥y∥∥Lp

, (2.19)

where

eredy,rel,L1
=

∥∥y − yred
r

∥∥
L1∥∥y∥∥L1

=

∑ns

k=1

∥∥y(tk)− yred
r (tk)

∥∥
2∑ns

k=1

∥∥y(tk)∥∥2 , (2.20a)

eredy,rel,L2
=

∥∥y − yred
r

∥∥
L2∥∥y∥∥L2

=

√∑ns

k=1

∥∥y(tk)− yred
r (tk)

∥∥2
2√∑ns

k=1

∥∥y(tk)∥∥22 , (2.20b)

eredy,rel,L∞ =

∥∥y − yred
r

∥∥
L∞∥∥y∥∥L∞

=
maxk

∥∥y(tk)− yred
r (tk)

∥∥
2

maxk
∥∥y(tk)∥∥2 . (2.20c)

B. Point-wise error measure:
Besides the norm-wise error, the error can also be measured as a time-series
data by evaluating the states x(tk) ∈ Rn,xred

r (tk) ∈ Rr and the outputs
y(tk),y

red
r (tk) ∈ Rp at every time-step tk. The point-wise wise in this case

will be evaluated as follows:

eredx,rel(.)(tk) =

∥∥x(tk)−Vxred
r (tk)

∥∥
(.)∥∥x(tk)∥∥(.) , eredy,rel(.)(tk) =

∥∥y(tk)− yred
r (tk)

∥∥
(.)∥∥y(tk)∥∥(.)

(2.21)

for any desired vector norm (.) ∈ {1, 2,∞, ...}.
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2.2 Model order reduction in linear systems

2.2.1 Linear time-invariant systems

Surprisingly, many technical systems can be represented as linear time invariant
(LTI) systems. Though most of the complex systems are intrinsically nonlin-
ear, linear models often help to provide a first approximation of the underlying
dynamics. Furthermore, in many practical situations, linearizing the nonlinear
model around a known equilibrium point provides a reflection of how the original
model evolves which is highly beneficial in control and design.

Let us begin with the state-space representation of a large-scale, continuous-
time, multiple-input, multiple-output LTI system as follows:

Σ

{
Eẋ(t) = Ax(t) +Bu(t), x(0) = x0

y(t) = Cx,
(2.22)

where x(t) ∈ Rn is known as the state-vector in control system parlance. This
represents the vector of unknowns whose entries are called internal variables or
state variables. The order of the state-space model is n i.e., the state vector
x(t) ∈ Rn spans an n-dimensional Euclidean space. Vectors u(t) ∈ Rm and
y(t) ∈ Rp are the inputs and outputs of the system, whereas E ∈ Rn×n is the (non-
singular) descriptor matrix, A ∈ Rn×n is the system matrix, B ∈ Rn×m is the input
matrix, and C ∈ Rp×n is the output matrix respectively. System (2.22) represents
a multiple-input multiple-output (MIMO) system with m, p << n. However,
for single-input single-output (SISO) systems, m = p = 1, and the matrices B,
C become vectors b and cT whereas vectors u and y become scalars u and y
respectively. The LTI system (2.22) is called regular if the matrix E is nonsingular
or descriptor system otherwise. In case of singular E, (2.22) represents a system of
differential-algebraic equations (DAEs) rather than ordinary differential equations
(ODEs) which are more difficult to solve. So, system (2.22) essentially represents
a large-scale, initial value problem that we are interested in solving for some
predefined time-span, in the presence of some excitation function u(t).

Throughout this thesis the matrix E is assumed to be regular, i.e, without
any algebraic constraints. The regularity of E theoretically allows us to replace
A → E−1A and B → E−1B in order to obtain an explicit representation with
E = I. Nevertheless, the inverse is usually avoided in practice due to numerical
reasons and only used in theoretical statements. In addition to this, it is assumed
throughout thesis that system 2.22 is minimal, i.e., the pair (E−1A,E−1B) is
controllable (cf. Def. 2.7) and the pair (C,E−1A) is observable (cf. Def. 2.8).
It is further assumed that the system Σ is asymptotically stable (cf. Def. 2.6)
implying that all the eigenvalues are in the open left-half of the complex plane,
i.e., λ(E−1A) ⊂ C−.
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Definition 2.6 (Asymptotic Stability) A dynamical system is called stable, if
for every state-trajectory x(t) it holds

∥∥x(t)∥∥ ≤ c,∀t for some constant c and
asymptotically stable if additionally, lim

t→∞

∥∥x(t)∥∥ = 0 for an arbitrary norm
∥∥.∥∥ ▲

Definition 2.7 (Reachability) Given a dynamical system Σ, a state x̂ ∈ Rn is
called reachable from the zero state if there exists a forcing function u(t) of finite
energy, and a time T <∞ such that

x̂ = ϕ(u; 0;T ).

The system Σ is called reachable if the reachability matrix given as

R =
[
B AB · · · An−1B

]
∈ Rn×nm, (2.23)

has full row rank, i.e., rank(R) = n.
Alternatively, the linear system Σ is reachable if the reachability gramian P ∈
Rn×n, defined as

P =

∫ ∞

τ=0

e(E
−1A)τE−1B(E−1B)T e(E

−1A)T τ dτ, (2.24)

is positive definite, i.e., P = PT ≻ 0. ▲

The concept of reachability is essential for some model reduction methods, such
as balanced truncation, which will be discussed later on. The idea is to figure out
which states are challenging to reach, i.e., states which require a large amount
of energy to be reached. Once identified, those states can be neglected without
influencing the behavior of the system.

Definition 2.8 (Observability) Given a dynamical system Σ, the pair (C,A)
is called observable, if the observability matrix defined as:

O =
[
CT ATCT · · · ATn−1

CT
]T
∈ Rpn×n, (2.25)

has full column rank, i.e., rank(O) = n.
Alternatively, the linear system Σ is observable if and only if the observability
Gramian Q ∈ Rn×n, defined as

Q =

∫ ∞

τ=0

e(E
−1AT )τCTCe(E

−1A)τ dτ, (2.26)

is positive definite, i.e., Q = QT ≻ 0. ▲
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2.2.2 Input-output characterization in time domain

It is well known that the solution of the state-equation (2.22) is determined as:

x(t) = e(E
−1A)tx0 +

∫ t

0

eE
−1A(t−τ)E−1Bu(τ) dτ. (2.27)

Assuming a zero initial condition x0 = 0, the so-called impulse response matrix
of the system is given as:

h(t) = Ce(E
−1A)tE−1B ∈ Rp×m, (2.28)

and the output response yi(t) for i = 1, 2, ..., p is then given as:

yi(t) =
m∑
k=1

∫ t

τ=0

hik(t− τ)ukdτ + cTi e
(E−1A)tx0, (2.29)

where denotes the (ik)-th entry of the impulse response matrix h(t).

2.2.3 Input-output characterization in frequency-domain

In order to derive an explicit input-output relation of system (2.22) in frequency-
domain, we proceed by taking Laplace transform of equations (2.22)

sEX(s)−X(0) =AX(s) +BU(s), (2.30a)

Y(s) =CX(s). (2.30b)

Solving for state equation and substituting the result in output equation yields:

Y(s) = C(sE−A)−1B︸ ︷︷ ︸
G(s)

U(s) +C(sE−A)−1X(0), (2.31)

where G(s) = C(sE−A)−1B ∈ Rp×m is the rational transfer function matrix. For
SISO systems, the transfer function is a rational function of degree n. A useful
representation of the transfer function G(s) known as the pole-residue expression
is obtained for a diagonal A, which given as follows:

G(s) =
n∑

i=1

Ri

s− λi

, (2.32)

where

Ri = lim
s→λi

G(s)(s− λi), (2.33)

and λi, i = 1, ..., n represent the eigenvalues of A. Kindly note that minimal
assumption of system Σ implies that no pole-zero cancellation occurs. This will
otherwise result in a system with less dimensions.
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2.2.4 Reduction using projection

As previously discussed in Section 2.1.1, model order reduction of dynamical sys-
tems is often performed using projection technique, i.e., the high-order dynamics
are projected onto a subspace of lower dimension. In what follows, we explain the
projective MOR scheme for LTI systems.

The idea is based on the premise that the state-trajectory x(t) mainly evolves
in a r-dimensional subspace V of the state-space Rn. Let V ∈ Rn×r, which is full
column rank matrix, be the basis of V , then the state-vector x(t) ∈ Rn can be
expressed in terms of reduced state-vector xr(t) ∈ Rr as follows:

x(t) = Vxr(t) + e(t), (2.34)

where e(t) is the error due to approximation. Using (2.34) into the state-equation
(2.22) yields an over-determined system of equations given as:

EVẋr(t) = AVXr(t) +Bu(t) +Ae(t)− Eė(t).︸ ︷︷ ︸
r(t)

(2.35)

Now, in order to make this a well-posed problem, the system (2.35) is projected
orthogonally to another subspace W = ran(W) where the matrix W ∈ Rn×r is
a basis of W and is selected such that WTEV is non-singular. This yields the
desired projector onto the subspace U = ran(EV), and is given as:

P = EV(WTEV)−1WT . (2.36)

Multiplying (2.35) from the left with the projector (2.36) yields:

P(EVẋr(t)−AVxr(t)−Bu(t)︸ ︷︷ ︸
Γ(Vxr(t)),u(t)

−r(t)) = 0. (2.37)

Now, enforcing a so-called Petro-Galerkin condition, i.e., WT r(t) = 0 eliminates
the residual term leading to the final reduced model of dimension r as follows:

Σr :

{
Erẋr(t) = Arxr(t) +Bru(t), xr(0) = xr,0,

yr(t) = Crxr(t),
(2.38)

where

Er = WTEV,Ar = WTAV,Br = WTB,Cr = CV, (2.39)

and xr,0 = (WTEV)−1WTEx0. It still remains open how to choose the projection
matrices V and W such that e(t) =

∥∥y − yr

∥∥ is minimized. This is where the
different reduction methods vary, and is explained next.
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2.2.5 Overview of linear reduction methods

A. Methods based on balancing
Balanced truncation and the related methods are the methods of choice for
model reduction techniques for LTI systems as it preserves the asymptotic
stability in the reduced model. The idea was first introduced by Mullis
and Roberts in 1976 [212], and was later formalized by Moore [210]. The
idea is to transform the system into a realization where the states that are
difficult to control are simultaneously hard to observe. This is achieved by
simultaneously diagonalizing the reachability and observability gramians P
and Q which are the solutions of the Lyapunov equations given as:

APET + EPAT +BBT = 0, (2.40a)

ATQE+ ETQA+CTC = 0, (2.40b)

where Q = ET−1QE−1.

Definition 2.9 (Lyapunov balancing) The reachable, observable and sta-
ble system Σ is called Lyapunov balanced if

P = Q = diag(σ1, ..., σn), (2.41)

where σ1 > σ2 > ... > σn ≥ 0, and σi =
√

λi(PQ) are called Hankel sinular
values. The systems with equal and diagonal Gramians are called balanced
realizations. ▲

To be more precise, the smallest amount of energy required to reach a state
xr from zero initial state x0 is given by [14]

Er = x∗
rP−1xr, (2.42)

while the largest observation energy produced by the state x0 with no exci-
tation function is given by (Chapter 4,[14])

Eo = x∗
0Qx0. (2.43)

Thus, if a system Σ satisfies the relation (2.41), then the states that require
a huge amount of energy to reach yield only a small amount of energy if
they are observed. This yields the conclusion that, these states do not
contribute much to the input-output behavior of the system, and hence can
be neglected.

In general, there are two steps to obtain a reduced model via balanced
truncation. The first step is to transform the system to be reduced into a
balanced realization, where each state is equally controllable and observable,
i.e., the controllable and observable Gramians become equal and diagonal.
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Then, the next step is performed by truncating the state variables that
correspond to smallest singular values σj << σi, i = 1, ..., r, j = r + 1, ..., n.
This is achieved numerically by, e.g., the square root balancing method [130]
which is summarized in Algorithm 1.

Algorithm 1 Generalized Square Root (GSR) Method

Input: A realization Σ = {E,A,B,C}
Output: {Er Ar,Br,Cr}
1: Compute the cholesky factors Rp and Lp of the Gramians P and Q that satisfy
P = RpR

T
p and Q = LpL

T
p .

2: Obtain the SVD of LT
pERp = USVT and partition:

LT
pERp =

[
U1 U2

] [S1

S2

][
VT

1

VT
2

]
,

whereU1 ∈ Rn×r,VT
1 ∈ Rn×r are orthogonal, and S1 = diag(σ1, ..., σr) ∈ Rr×r.

3: Select V = RpV1S
−1/2
1 ∈ Rn×r and WT = S

−1/2
1 UT

1L
T
p ∈ Rr×n and projection

matrices T =WT and T−1 = V .
4: Compute the reduced-order system:

{Er,Ar,Br,Cr} = {TET−1,TAT−1,TB,CT−1}.

In order to reduce the order of descriptor system (2.22), we have to compute
the Cholesky factors of the reachability and observability Gramians that sat-
isfy the Lyapunov equation (2.40). These factors can be determined by the
generalized Schur-Hammarling method [281, 282] without having to compute
the solution of Lyapunov equations explicitly. Lyanupov balancing can be
applied efficiently for small and moderate size systems, however, in large-
scale settings, exact balancing becomes highly expensive as it requires dense
matrix factorizations resulting in a computational complexity of O(n3) and
storage of O(n2). Towards this direction, approximate balanced reduction
methods were proposed, see, e.g., Penzel [230], Antoulas and Sorensen [277],
Gugercin et al. [144].

Besides the Lyapunov balancing, there exist other types of balancing meth-
ods such as stochastic balancing [92], positive real balancing, bounded real
balancing [221], frequency weighted balancing [102], and LQG balancing
methods [161]. Furthermore, balanced truncation methods have also been
extended to differential-algebraic equations [283, 202, 56], time-varying sys-
tems [271, 258, 181], nonlinear systems [267, 50], second-order systems [206,
76, 247], and parametric systems [274].
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One of the main advantage of balanced truncation methods is that it gener-
ally preserves the asymptotic stability in the reduced model with a rigorous
a-priori error bound [130] given as:

∥∥G−Gr

∥∥
H∞
≤ 2

n∑
1=r+1

σi, (2.44)

where Gr(s) = Cr(sEr − Ar)
−1Br is the reduced transfer function model.

However, the global error bound (2.44) holds only when the Lyapunov equa-
tions are solved in exact arithmetic. When using an approximate solution of
the Lyapunov equation, the bound is expected to hold only approximately
[38, 143]. Despite these issues, balanced truncation still remains the popular
MOR choice for LTI systems.

B. Methods based on Krylov subspaces
Another class of model reduction for LTI systems is based on Krylov sub-
spaces. These are also known in MOR literature as moment-matching meth-
ods [14, 19, 16, 18]. These methods produce a reduced-order model that in-
terpolates the full-order system’s response at some predefined interpolation
points. The main reason these methods are so successful is their numerical
stability and that these methods involve less dense matrix transformations.
Some excellent reviews can be found in Refs.[40, 31, 116, 109, 120, 117].

For LTI systems considered here, the transfer function G(s) can also be
written as:

G(s) = −C(I− sA−1E)−1A−1B. (2.45)

Using the Neumann expansion, we can rewrite the above expression as:

(I− sA−1E)−1 =
∞∑
i=0

(A−1Es)i, (2.46)

which can be further expanded via Taylor series as

G(s) =−CA−1B−CA−1EA−1Bs− ...

−C(A−1E)iA−1Bsi − ...
(2.47)

Definition 2.10 (Moments of an LTI system) [14] The moments of the
LTI system (2.22) about the expansion point s = 0 are the negative coeffi-
cients of the Taylor series expression (2.47) expanded about s = 0, and are
given as

ηi = C(A−1E)iA−1B i = 0, 1, ... (2.48)
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The moments of system (2.22) at the point s = 0, are also the successive
derivatives of the transfer function G(s) i.e.,

η0
i = −

1

i

diG(s)

dsi

∣∣∣∣
s=0

(2.49)

If the expansion is performed at some other point s = σ, then the moments
of (2.22) are computed by replacing the matrix A with (A − σE) in (2.48)
i.e.,

ησ
i = C((A− σE)−1E)i(A− σE)−1B, (2.50)

for i = 0, 1, ... and where it is assumed that the matrix pencil (A − σE) is
nonsingular. ▲

Definition 2.11 (Markov parameters) [14] The coefficients of the Tay-
lor series of transfer function G(s) about s = σ for σ → ∞, are defined as
the Markov parameters of the LTI system (2.22) and are defined as:

Mi = C(E−1A)iE−1B i = 0, 1, ... (2.51)

Furthermore, the i-th Markov parameter is equal to i-th derivative of the
impulse response of system (2.22) at t = 0 i.e,

Mi =
diℏ(t)
dti

∣∣∣∣
t=0

(2.52)

This implies that the first Markov parameter M0 is the system’s impulse
response at t = 0. ▲

2.2.6 Moment-matching in frequency domain

Model reduction via moment matching implies that a reduced-order model is to
be obtained whose moments match the the full-order model moments at certain
frequencies of interest. If the moments are matched about s = 0, the reduced-
order model is called the Padé approximant, and the problem is known as Padé’s
approximation. If the moments are matched at some other point s = σ, the
problem is known as shifted Padé’s approximation, and when the Markov param-
eters are matched, the problem is termed as partial realization. It is often desired
to match moments at more than one expansion point i.e., at specific frequency
intervals, then we talk about the multipoint Padé or the rational interpolation
problem. Thus, model reduction via moment matching is to construct a reduced
model (2.38) such that the moments of G(s) match the reduced system’s moments
having transfer function Gr(s). Now, this begs the questions on how to select the
expansion points and, as such, obtain the projection matrices V and W. This is
explained next for both SISO and MIMO case.
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SISO case

For SISO systems, (2.22) simplifies to

ΣSISO :

{
Eẋ(t) = Ax(t) + bu(t),

y(t) = cTx(t),
(2.53)

and its ROM via projection is given as:

Erẋr(t) = Arxr(t) + bru(t),

yr(t) = cTr xr(t),
(2.54)

where

Er = WTEV,Ar = WTAV,br = WTb, cr = cTV, (2.55)

and WTb, cTV ∈ Rr.

Theorem 2.2 (One-sided Padé approximation) [14, 119, 137] In order to
match r moments between the full-order system (2.53) and reduced model (2.54)
at the expansion point s = 0, it is required that the columns of projection matrix V
used in (2.55) form a basis for the Krylov subspace Kr(A

−1E,A−1b). Furthermore
the matrix W is selected such that the matrix Ar is nonsingular. ▲

The subspace Kr(A
−1E,A−1b) is known as input Krylov subspace and the reduced

scheme is known as the one-sided Krylov subspace method. A typical choice of one-
sided Krylov subspace method is W = V. This has an advantage of preserving
stability and passivity of reduced model for some specific large-scale models.

Theorem 2.3 (Two-sided Padé approximation) [14, 119, 137] In order to
match 2r moments between the full-order system (2.53) and reduced model (2.54)
at the expansion point s = 0, it is required that the columns of projection ma-
trices Vand W used in (2.55) form the basis for the Krylov subspaces given as
Kr(A

−1E,A−1b) and Kr(A
−TET ,A−Tc) respectively, where A and Ar are as-

sumed to be invertible. ▲

This reduction scheme is known as two-sided Krylov subspace method, and this cor-
responds to matching double the number of moments than the one-sided method.

Theorem 2.4 (Shifted Padé approximation) [14, 119, 137] In order to match
2r moments between the full-order system (2.53) and reduced model (2.54) at
the expansion point s = σ, it is required that the columns of projection matri-
ces Vand W used in (2.55) form the basis for the Krylov subspaces given as
Kr((A − σE)−1E, (A − σE)−1b) and Kr((A − σE)−TET , (A − σE)−Tc) respec-
tively, where A and Ar are assumed to be invertible. ▲
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Remark 2.4 (Shifted approximation) This is achieved by substituting the
matrix A by (A− σE) in the respective Krylov subspaces as explained earlier.

Sometimes, one is interested in capturing the high-speed dynamics of the
system at hand, which is achieved by matching moments at higher frequencies
(s→∞) i.e, matching some of the Markov parameters.

Theorem 2.5 (One-sided Padé and Markov approximation) Let m1 ∈ Z
and 0 ≤ m1 ≤ r, then by selecting the matrix V used in (2.55) as a basis for
Krylov subspace given as Kr(A

−1E, (E−1A)m1A−1b) matches the first m1 Markov
parameters and the first r −m1 moments of systems (2.53) and (2.54) resp. ▲

Similarly, the matrix W is chosen such that Ar and Er are non-singular. It
immediately follows that the number of moments, in this case, can be doubled by
selecting the suitable input and output Krylov subspaces.

Theorem 2.6 (Two-sided Padé and Markov approximation) Let m1,m2 ∈
Z where 0 ≤ m1,m2 ≤ r, then by selecting the matrices V and W, used in
(2.55), as the basis for Krylov subspaces given as Kr(A

−1E, (E−1A)m1A−1b) and
Kr(A

−TET , (E−TA)m2A−Tc) respectively, matches the first m1 +m2 Markov pa-
rameters and the first 2r−m1−m2 moments of system (2.53) and (2.54) respec-
tively. ▲

Now, if the aim is to match moments at multiple expansion points: σ1, σ2, ..., σk,
then k different Krylov subspaces are to be constructed. In this case, the projec-
tion matrix is obtained by the union of all the respective Krylov subspaces such
that a universal basis is found.

Theorem 2.7 (Rational Interpolation) The first ri moments about σi are matched
between systems (2.53) and (2.54) respectively, by selecting the matrix V, used in
(2.55), as follows:

k⋃
i=1

Kri((A− σiE)
−1E, (A− σiE)

−1b) ⊆ colspan(V), (2.56)

where its assumed that (A − σiE) and (Ar − σiEr) are both nonsingular and W
is an arbitrary full rank matrix. ▲

Similar to previous cases, a two-sided method can provide double the number of
moments about each point σi. All the theorems mentioned above are summed up
in Table 2.1.
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Table 2.1: Various examples of MOR by moment matching in SISO systems

Name of reduced
order system

Expansion point
used

Type of
projection

Choice of Krylov subspace Moments matched

Padé[14, 119, 137] s = 0
one-sided Kr(A

−1E,A−1b) r

two-sided
Kr(A

−1E,A−1b),
Kr(A

−TET ,A−Tc)
2r

Partial realization/
Padé at ∞/Markov

s =∞ one-sided Kr(E
−1A,E−1b) r

two-sided
Kr(E

−1A,E−1b),
Kr(A

TE−T , cT )
2r

Shifted Padé[14, 137] s = σ
one-sided Kr((A− σE)−1E, (A− σE)−1b) r

two-sided
Kr((A− σE)−1E, (A− σE)−1b),
Kr((A− σE)−TET , (A− σE)−Tc)

2r

Padé and Markov s = 0 and s =∞ one-sided Kr(A
−1E, (E−1A)m1A−1b) m1 at ∞, r −m1 at 0

two-sided
Kr(A

−1E, (E−1A)m1A−1b),
Kr(A

−TET , (E−TA)m2A−Tc)
m1 +m2 at ∞,

2r −m1 −m2 at 0

Rational/
Multipoint Padé

si = σ1, σ2, ..., σk
one-sided

⋃k
i=1Kri((A− σiE)

−1E, (A− σiE)
−1b) ri about σi

two-sided

⋃k
i=1Kri((A− σiE)

−1E, (A− σiE)
−1b),⋃k

i=1Kri((A− σiE)
−TET , (A− σiE)

−Tc)
2ri about σi

So far, it is not clear how to numerically obtain the projection matrices V
and W. An early attempt at this was the Asymptotic Waveform Evaluation
(AWE) method [233] in which the moments were explicitly calculated rather than
computing the matrices V and W. The method became prominent due to its
capability to reduce RC interconnect models containing thousands of variables.
Later on, a multi-point version of the method was proposed by Chiprout and
Nakhla [84]. AWE-based methods, however, had a numerical instability that the
vectors become linearly dependent and converge to an eigenvector of A. This
shortcoming was first pointed out by Gallivan et al. [124] and later by Feldman
and Freund [107]. Consequently, this led to the development of implicit-based
moment-matching methods, and the first significant contribution came via the
Arnoldi method [22, 117]. This method employs a one-sided projection to iter-
atively construct a set of normalized vectors satisfying VTV = I. Within every
iteration, a new vector is generated, which is orthogonal to all the previous ones.
This results in an upper Hessenberg structure of the matrix Ar and the vector br

becomes a multiple of the first unit vector. However, this algorithm also generates
a linearly dependent set of basis vectors for a relatively large value of r. This
is normally avoided by deflating the redundant columns of V to retain reduced
models with a certain degree of accuracy [89]. This has been demonstrated by B.
Salimbahrami [256] where a modified Gram-Schmidt orthogonalization scheme is
employed.

Another key contribution towards implicit moment matching was the two-sided
Lanczos method [107, 180], also known as the Padé via Lanczos (PVL) method.
This method constructs two sequences of basis vectors which span the respective
input and output Krylov subspaces satisfying WTV = I, resulting in an upper
triangular structure of the matrixAr. Apart from matching moments, this method
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was initially proposed for obtaining reduced models based on the computation of
eigenvalues [219]. Further work in this direction led to the development of partial
realization via Lanczos method by Gragg and Lindquist [132]. The method was
also extended to MIMO systems by Aliaga et al. [4] (also see Refs. [167, 168]).
Boley [59] addressed the issue regarding the loss of biorthogonalization in the
classical Lanczos method. Later-on, new results also appeared in the areas of
stability retention [138], error analysis [159] and in control literature [59, 292].
However, these studies didn’t present any new structure in projection technique
for rational interpolation.

To retain passivity among the reduced models, the passive reduced-order in-
terconnect macromodelling algorithm (PRIMA) was proposed by Odabasioglu et
al. [220]. The idea was demonstrated in linear RLC systems. In order to match
moments at multiple expansion points, the rational Lanczos method and the dual
Arnoldi method were proposed by Grimme et al. [137]. Furthermore, the issue
of unstable partial realizations in classical Krylov methods was addressed by the
restarting techniques proposed by Grimme et al.[138], and the implicitly restarted
dual Arnoldi method by Jaimoukha and Kasemally [160].

MIMO case

For the case of MIMO systems, (given in (2.22)), the block Krylov subspaces are
defined as:

Kr(A,B) = span(B,AB, ...,Ar−1B). (2.57)

The block subspace for m starting vectors/columns of B can be considered as
a union of m Krylov subspaces for each starting vector [256]. Thus, by using
the block Krylov subspaces, all the above mentioned theorems for matching the
moments/Markov parameters can be generalized for MIMO systems. For instance,
one has to use the block versions, i.e, Kr(A

−1E,A−1B) and Kr(A
−TET ,A−TCT )

that generalizes Theorem 2.3. Consequently, r
m
moments are matched in one-sided

method and r
m
+ r

p
in the two-sided method.

Tangential Interpolation problem

The notion of interpolation for MIMO systems implies that the interpolating
matrix-valued rational function Gr(s) matches the origin function G(s) with re-
spect to some predefined error. This would, in effect, require p×m interpolation
conditions for each interpolation point. As such, this will result in large size of
reduced-order model r for even a moderate size of input and output dimensions
m and p. Thus, for MIMO systems, it’s desired that the interpolating function
matches the original function along certain specific directions or tangent direc-
tions. Consequently, this involves selecting interpolation points as well as the
interpolation directions.
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Tangential interpolation based moment matching for MIMO systems has been
presented in many studies such as in Ref’s. [14, 17, 31, 223, 107, 119, 124]. It is
the extension of rational Krylov methods to MIMO systems when all tangent di-
rections are the same. The tangential interpolation problem for descriptor systems
was also proposed by Gugercin et al. [145] and for index one descriptor system
by Antoulas et al. [17]. In the following, we brief the tangential interpolation
problem.

Definition 2.12 (Right-tangent interpolant) Letwi ∈ Cm be the (non-trivial)
right tangent direction, we defineGr(s) to be the right tangent interpolant ofG(s)
at s = σi along wi if

G(σi)wi = Gr(σi)wi. (2.58)

▲
Similarly, the left tangential interpolant is defined as:

Definition 2.13 (Left-tangent interpolant) Let vi ∈ Cp be the (non-trivial)
left tangent direction, then we define Gr(s) to be the left tangent interpolant of
G(s) at s = µi along vi if

vT
i G(µi) = vT

i Gr(µi). (2.59)

▲

Thus, given a set of r left interpolation points {µi}ri=1, r left tangential direc-
tions {vi}ri=1, r right interpolation points {σi}ri=1, and r right tangential directions
{wi}ri=1, we can formulate the model reduction problem via tangential interpola-
tion as finding a degree-r reduced transfer function Gr(s) such that (2.58) and
(2.59) hold for i = 1, 2, .., r.

Definition 2.14 (Bitangential Hermite interpolant) Given a set of r left and
r right tangential directions as vi and wi respectively, we define Gr(s) to be a
bitangential Hermite interpolant of G(s), if Gr(s) satisfies both (2.58) and (2.59).
In addition to this, it is required that

vT
i

dG(s)

ds

∣∣∣∣
s=σi

wi = vT
i

dGr(s)

ds

∣∣∣∣
s=σi

wi, (2.60)

holds for i = 1, 2, ..., r. ▲

Theorem 2.8 (Tangential interpolation) [125] If the columns of matrices V
and W used in (2.55) are selected as:

(σE−A)−1Bw ∈ Ran(V), (2.61a)

(vTC(µE−A)−1)T ∈ Ran(W), (2.61b)
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then the following tangential interpolation conditions are satisfied

G(σ)w = Gr(σ)w, (2.62a)

vTG(µ) = vTGr(µ), (2.62b)

with the assumption that (σE−A) and (µE−A) are invertible. Furthermore, if
(2.62) hold with σ = µ then the bitangential Hermite condition, i.e,

vT dG(s)

ds

∣∣∣∣
s=σ

w = vT dGr(s)

ds

∣∣∣∣
s=σ

w, (2.63)

is satisfied as well. ▲

Theorem 2.8 demonstrates a left or right interpolation condition without the need
to explicitly calculate the values that are interpolated. The idea can be easily
extended to the case of r interpolation points i.e., given a set of r left interpola-
tion points {µi}ri=1, r right interpolation points {σi}ri=1, r left tangent directions
{vi}ri=1 and r right tangent directions {vi}ri=1 respectively, we can construct the
matrices V and W, that satisfy the Lagrange tangential interpolation conditions
in (2.58,2.59) and also the bitangential Hermite interpolation condition in (2.60)
for σi = µi, given as follows:

[(σ1E−A)−1Bw1, ..., (σrE−A)−1Bwr] = V, (2.64)

and

[(µ1E−A)−TCTv1, ..., (µrE−A)−TCTvr] = W. (2.65)

The scheme can also be used for higher-order Hermite interpolation given as fol-
lows:

Theorem 2.9 (Higher-order Hermite interpolation) [125] Given the inter-
polation points σ, µ ∈ C and the (nontrivial) tangent directions v ∈ Cp and
w ∈ Cm, let the matrix pencils (σE − A) and (µE − A) be invertible, then if
the columns of matrix V used in (2.55) are constructed as

((σE−A)−1E)k−1(σE−A)−1Bw ∈ Ran(V), (2.66)

for k = 1, .., N , then

djG(s)

dsj

∣∣∣∣
s=σ

w =
djGr(s)

dsj

∣∣∣∣
s=σ

w for j = 0, .., N − 1, (2.67)

and if the columns of matrix W used in (2.55) are constructed as

((µE−A)−TET )k−1(µE− A)−TCTv ∈ Ran(W), (2.68)
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for k = 1, ..,M , then

vT d
jG(s)

dsj

∣∣∣∣
s=µ

= vT d
jGr(s)

dsj

∣∣∣∣
s=µ

; j = 0, ..,M − 1, (2.69)

and if both (2.67) and (2.69) hold with σ = µ then

vT d
jG(s)

dsj

∣∣∣∣
s=σ

w = vT d
jGr(s)

dsj

∣∣∣∣
s=σ

w, (2.70)

for j = 0, ..., N +M − 1. ▲

The main benefit of interpolatory model reduction methods is that it avoids solv-
ing large-scale Lyapunov or Riccati equations, making it a convenient reduction
platform for large-scale systems. However, the main cost among these methods is
solving the shifted linear systems that are sparse in most cases and can be solved
using direct methods (e.g., Gaussian elimination). Also, one can prefer iterative
solution methods for obtaining the reduction basis V and W when dealing with
systems with millions of degrees of freedom.

2.2.7 Moment-matching in time-domain

So far, we have discussed the frequency domain notion of moment matching for
LTI systems for both SISO and MIMO systems. We saw that the reduced model
obtained using Krylov subspaces results in a local approximation of frequency
response. However, this cannot guarantee a good overall approximation of impulse
response. Gunupudi and Nakhla [146], were among the first to present a scheme
to match the first derivatives of time-response of full order model with that of
the reduced one. Later on, Wang et al. [301] presented a passive model order
reduction method based on Chebyshev’s expansion of the impulse response to
match the transient responses of the full model and the reduced-order model.
The Laguerre polynomial expansion-based reduction framework was presented by
Chen et al. [83]. This was later extended and further developed by Rudy [100].
However, the major contribution in this direction came from Astolfi [24] who also
extended the idea further to nonlinear systems [25, 26, 27]. In the following, we
describe the time-domain notion of moment matching based on Refs. [24, 25, 26].

Definition 2.15 (Time-domain moments of LTI systems) The moments η̄i(σ)
of the impulse response h(t) around a point s = σ is given by the weighted integrals
over the time function and satisfy

η̄i(σ) =

∫ ∞

0

τ ie−στh(t)dτ, (2.71a)

=

∫ ∞

0

τ iCe(E
−1A−σI)τ,E−1Bdτ (2.71b)

= i! C((σE−A)−1E)i(σE−A)−1B. (2.71c)

▲



2.2. Model order reduction in linear systems 33

Remark 2.5 Thus, the time-domain moments η̄i(σ) and the frequency-domain
moments ηi(σ) only differ by a factor:

ηi(σ) =
(−1)i

i!
η̄i(σ). (2.72)

This result is used to develop the notion of moments in terms of steady-state
response of system (2.22) interconnected with a linear signal generator. ▲

Definition 2.16 (Moment in time-domain) [23] The 0-th moment of system
(2.22) at s = σ can also be defined as

η0(σ) = CV, (2.73)

where V ∈ Rn×r uniquely solves the linear Sylvester equation given as:

AV +B = σEV. (2.74)

▲

Thus, the moments of system (2.22), η0(σ),η1(σ), ...,ηk(σ) can be uniquely de-
termined by the elements of matrix CV i.e., there exists a one-to-one relation
between the moments of system (2.22) and the elements of matrix CV, where V
being the unique solution of the following Sylvester equation

EVΞ−AV = BΨ, (2.75)

where Ξ ∈ Rr×r is any non-derogatory matrix, and it is assumed that the pair
(Ψ,Ξ) is observable.
Now, consider the following exogenous linear system (also known as signal gener-
ator):

ζ̇(t) = Ξζ(t), ζ(0) = ζ0 ̸= 0, (2.76a)

u(t) = Ψζ(t), (2.76b)

with ζ(t) ∈ Rr, λ(E−1A)∩λ(Ξ) = ∅ and the triple (Ξ,Ψ, ζ(0)) to be minimal i.e.,
the pair (Ψ,Ξ) is observable and (Ξ, ζ(0)) is controllable such that the generated
input signal u(t) is persistently exciting [29, 188].

Theorem 2.10 (Steady-state matching via moments) [25, 26] Consider sys-
tem (2.22), σ ∈ C. Assume λ(E−1A) ∩ λ(Ξ) = ∅. Let V satisfies the Sylvester
equation (2.75) and W such that det(WTEV ̸= 0). Consider the interconnection
of exogenous system (2.76) with system (2.22) as follows:

Eẋ(t) = Ax(t) +BΨ(eΞtζ(0)), (2.77a)

y(t) = Cx(t), (2.77b)

where the pair (Ψ,Ξ) is observable. Then, the (well-defined) steady-state of the
output of the said interconnection can be uniquely determined by the respective
moments η0(σ),η1(σ), ...,ηk(σ). ▲
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Thus, connecting a linear signal generator with the full order system (2.22) is
similar to providing exponential inputs to the system given as u(t) = Ψ(eΞtζ(0)).
The (well-defined) steady-state of interconnected system is given as:

y(t) = CeE
−1A(t)(x(0)−Vζ(0))︸ ︷︷ ︸

yp(t)

+CVζ(t)︸ ︷︷ ︸
yh(t)

(2.78)

where yh(t) represents the steady-state response of the system and for an asymp-
totically stable system, considered here, the transient response, represented by
yp(t) decays to zero at t→∞.

CrVrCV

FOM ROM

Exogenous System/ Signal Generator

ζ̇(t) = Ξζ(t)
u(t) = Ψζ(t)

Eẋ(t) = Ax(t) +Bu(t)
y(t) = Cx(t)

Erẋr(t) = Arxr(t) +Bru(t)
yr(t) = Crxr(t)

EVΞ−AV = BΨ ErVrΞ−ArVr = BrΨ

u(t) = Ψ(eΞtζ(0)) u(t) = Ψ(eΞtζ(0))

Moments ⇔ Steady-State Moments ⇔ Steady-State

=

Figure 2.3: Time-domain illustration of linear moment-matching in terms of
steady-state response matching

Using Theorem 2.10, the reduced-order model via moment-matching can be
obtained as follows:

Theorem 2.11 (Moment-matching in time domain) [26] Consider the full-
order model (2.22) and the system described in (2.38). Fix Ψ and Ξ such that
the pair (Ψ,Ξ) is observable. Also assume that λ(E−1A) ∩ λ(Ξ) = ∅ . Then, the
reduced model (2.38) matches moments with system (2.22) at (Ξ,Ψ, ζ(0)) if

CV = CrVr, (2.79)

where Vr is the unique solution of the Sylvester equation given as:

ErVrΞ−ArVr = BrΨ. (2.80)

▲
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Thus, moment-matching in the time-domain implies matching the full order model’s
steady-state response with the reduced model when both are excited by appro-
priate inputs from the signal generator. However, the steady-state response is
interpolated for inputs other than those generated from the signal generator.

The time-domain illustration of moment-matching in terms of interpolation of
steady-state response is depicted in Fig. 2.3. This kind of notion of moment-
matching in terms of steady-state response is particularly useful in the sense that
as it permits one to define moments even for those systems which don’t have a
transfer function representation, such as the time-varying systems.

2.2.8 Issues and recent advancements in linear moment-matching

Model order reduction using Krylov subspace methods provides an indispensable
platform for reducing large-scale problems; however, there are many issues related
to the automatic generation of the reduced model. Although various algorithms
have been developed in the past, these apply only to some specific class of problems
or under some specific conditions. Next, we highlight some major relevant issues
and overview some of the significant achievements in this direction.

A. Choice of expansion point(s)
The choice and number of interpolation points or shifts in Krylov subspace
methods is an important factor in dictating the quality of the approxima-
tion.To address this issue, a lot of work has been carried out over the past
years. In order for the reduced system to minimize the H2-norm error,
various optimality conditions have been formulated either in terms of ra-
tional interpolation conditions [42, 43, 41, 66, 140, 141, 172, 203, 293] or
in terms of Sylvester and Lyapunov equations [55, 148, 278, 310, 314]. For
SISO systems, the interpolation conditions were first proposed by Meier and
Luenberger [203]. Gugercin et al. proposed the iterative rational Krylov
algorithm (IRKA) [140, 142], which produces reduced models satisfying the
first-order necessary conditions for H2 optimality by selecting the interpola-
tion points as the mirror images of the poles of the reduced system. The idea
was later extended to MIMO systems in Refs. [66, 141, 293]. Van Dooren et
al. derived the optimality conditions for the case of repeated poles of Gr(s)
[293]. Generally speaking, IRKA has been a significant success in obtaining
optimal reduced models, and, as such, finds applications in psychophysiology
[165], optimal cooling of steel profiles [141] and many others. Recently, this
method was also extended for the reduction of bilinear systems by Benner
and Breiten [46]. The convergence of IRKA is guaranteed a priori in some
situations [114], albeit fails in some cases [114, 141]. However, the choice of
initial starting values remains an open question.

Druskin and Simoncini [96] proposed an adaptive computation of interpo-
lation points for the rational Krylov methods. Though this method is less
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accurate than IRKA, it has a low computational cost. This was later fol-
lowed by the SPARK algorithm by Panzer et al. [225] in which the choice
of interpolation point(s), as well as the order of reduced model, is adap-
tively selected. Similar work was also presented in Ref. [110]. Based on the
binary search principle, Bollhöfer and Bodendiek [60] presented adaptive
rules for selecting the shifts. They showed a general scheme for determining
both the shifts and the moments by combining the adaptive shift selection
scheme with the adaptive moment selecting method as presented earlier in
Ref. [182]. However, the choice of selecting the reduced-order dimension
remains unknown.

Besides the appropriate choice of interpolation point, it is often required in
certain applications that the interpolation is carried out in specific frequency
regions of interest. This involves weighting certain frequencies more than
others. To allow frequency weighting, the weighted H2 model reduction was
first proposed by Halevi [148, 278] as the solution of Riccati and Lyapunov
equations. However, a more efficient version of this scheme was introduced
in SISO systems by Anić et al. [11] and for MIMO systems by Breiten et al.
[63].

All the above methods described demand more or less heuristics, as the user
has to manually pick and try several interpolation points and decide what
works satisfactorily for their application. This is because of the absence of
global error bounds for Krylov subspace methods, which will be discussed
next. However, a general scheme that one can follow (as given in Ref. [100])
is that by selecting s = 0, the steady-state accuracy is improved as the DC
gain of both the full-order and reduced-order model is matched. By selecting
s →∞, the resulting reduced system better approximates the transient re-
sponse of the full-order system. Also, selecting multiple interpolation points
across the frequency spectrum leads to a better approximation on a broader
frequency band.

B. Global error indicator
Another major open issue in Krylov-based reduction is the lack of a global
error bound between the full-order system and the reduced one. Earlier
results in this direction led to the development of local error bounds for
the transfer function only for a certain frequency range [34, 137]. Later,
some heuristic error indicators were presented in Refs. [44, 137]. It was
proposed that the error between the full-order model and the reduced model
is approximately equal to one between two successive reduced-order models.
However, no proof was provided. A deductible error estimator was presented
first by Konkel et al. [169].

A posterior error indicator was presented by Feng, and Benner [108], whereby
a greedy algorithm determines the next interpolation point based on the
largest error. However, the method is applicable only to some special class
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of LTI systems where the matrix E in (2.22) is symmetric positive definite.
A similar requirement is mandated in the method presented by Panzer et al.
[226] whereby global H2 and H∞ error bounds are derived. Furthermore,
it is also required that A + AT > 0. Another study by Wolf et al. [309]
proposed a gramian-based output error bound. However, the method is not
computationally practical for large-scale systems as it involves the explicit
computation of observability gramian.

Thus, we conclude that the calculation of an exact global error bound in
Krylov-based reduction methods requires the involvement of the full-order
system, and this would become practically challenging for large-scale set-
tings. As such, this remains an open area of research.

C. Preserving Stability and Passivity
One of the most fundamental requirements in any reduction scheme is that
the property of stability and passivity remains preserved in the reduced
model to make sense of surrogate modeling. It is well-known that Krylov
subspace-based reduced-order modeling techniques do not preserve stabil-
ity or passivity in general. However, there are some appreciable efforts
in this direction. Methods proposed in Refs. [118, 166] offer guaranteed
stability and passivity of the reduced models if the original system is pas-
sive. Another set of methods were presented in Refs.[32, 138, 160]. These
methods are based on post-processing schemes, in which the unstable poles
of the reduced system are removed using explicitly restarted Lanczos and
Arnoldi methods. Inspired by the relation between Löwner and Pick matri-
ces, the interpolation-based passivity preserving methods were proposed in
Refs.[15, 276].

Similar to the previous discussion, these methods are confined to a special
class of LTI systems and extend only to one-sided Krylov methods. The
interpolation-based methods are numerically costly than classical Krylov-
based MOR. As far as the restarted algorithms are considered, these apply
to SISO systems only. Furthermore, after removing the unstable poles, these
methods do not preserve moment matching property and, as such, do not
always guarantee to obtain a stable a reduced model with a finite number
of restarts, thus making this an open problem to be addressed.

2.3 Chapter summary

In this chapter, we have reviewed some of the mathematical fundamentals involved
in MOR. We first discussed some tools from linear algebra that form the basis of
this thesis. Then, we formally introduced the MOR in linear systems via projec-
tion. We presented an overview of the most popular reduction approaches for LTI
systems and pointed out the differences and similarities among various methods.
Then, we described the problem of MOR via the moment-matching perspective.
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We explained the different Krylov subspaces used to obtain the reduced mod-
els for SISO systems. We have also examined the tangential interpolation-based
moment-matching methods for MIMO systems. Both frequency and time-domain
notions of the moment-matching technique were discussed. Several open problems
were also highlighted. In the next chapter, we will extend these system-theoretic
concepts to nonlinear systems.



Part II

Nonlinear State-Space Systems
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Chapter 3

Model Order Reduction in Nonlinear
Systems

In this part of the thesis, we focus on MOR for a general class of nonlinear state-
space systems. First, we will discuss the two classes of projection techniques
involved in the reduction of nonlinear systems. Afterward, we will present an
overview of some well-established nonlinear MOR routines and highlight the sim-
ilarities and differences among them. Then, we will discuss the nonlinear en-
hancement of the moment-matching technique in terms of steady-state response
matching. At the end of this chapter, we will also discuss the hyper-reduction
method for nonlinear systems.

3.1 Nonlinear time-invariant systems

Consider a large-scale, exponentially stable, time-invariant, MIMO, nonlinear sys-
tem in state-space form as follows:

ΣNL

{
Eẋ(t) = f(x(t),u(t)), x(0) = x0

y(t) = g(x(t)),
(3.1)

with non-singular descriptor matrixE ∈ Rn×n, the vectors x(t) ∈ Rn,u ∈ Rm,y(t) ∈
Rp, and two nonlinear, vector valued functions f(x,u) : Rn × Rm → Rn,g(x) :
Rn → Rp such that f(0,0) = 0 and g(0) = 0. We assume that the zero equilib-
rium, (calculated from 0 = f(x,0)), is locally exponentially stable.

Unlike in linear systems, the input-output relationship in a nonlinear system
cannot be analytically expressed in terms of transfer functions, convolutional inte-
grals, or state-transition matrix. This is possible only for some special polynomial
nonlinear systems such as bilinear or quadratic-bilinear systems via the Volterra
series representations [252, 62].

40
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3.2 Reduction using projection

Similar to LTI systems, the reduction of the nonlinear state-space model (3.1)
is also carried using projection technique. However, for nonlinear systems, we
distinguish between the linear and nonlinear Petrov-Galerkin projection.

3.2.1 Nonlinear Petrov-Galerkin projection

One promising way to obtain a reduced-order model of a nonlinear system is by
applying a nonlinear Petrov-Galerkin projection, whereby the approximation used
is as follows:

x(t) = ℘(xr(t)) + e(t), (3.2)

where ℘(xr) : Rr → Rn is a nonlinear smooth mapping, and e(t) is the approxi-
mation error. The derivative of (3.2) yields

ẋ(t) = Ṽẋr(t) + ė(t), (3.3)

where

Ṽ =
∂℘(xr(t))

∂xr(t)
∈ Rn×r, (3.4)

is the Jacobian matrix. Substituting the approximation ansatz (3.2), and its
derivative (3.3) in (3.1) results in an over-determined system of equations given
as:

EṼxr ẋr(t)− f(℘(xr(t),u(t)))− r(t) = 0. (3.5)

with r(t) ∈ Rn as the residual term. The resulting system is then projected onto
the subspace Ũ = ran(EṼxr) to obtain a square ROM. The projection is performed
along the orthogonal complement W̃⊥ = ran(W̃xr)

⊥ where

W̃T
xr

=
∂φ(ω(x,u))

∂x

∣∣∣∣
x=℘(xr)

∈ Rr×n, (3.6)

with the mapping φ(ω(x,u)) : Rn → Rr. Multiplying the overdetermined system
(3.5) from the left with the projector P = EṼxr(W̃

T
xr
EṼxr)

−1W̃T
xr

gives:

P

EṼxr ẋr(t)− f(℘(xr(t),u(t)))︸ ︷︷ ︸
ω(℘(xr(t),u(t)))

−r(t)

 = 0. (3.7)

Finally, enforcing a Petrov-Galerkin condition W̃T
xr
r(t) = 0, vanishes the residual

leading to the final ROM of dimension r given as:
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Erẋr(t) =
∂φ(ω(x(t),u(t)))

∂x(t)

∣∣∣∣
x(t)=℘(xr(t))

f(℘(xr(t),u(t))), xr(0) = xr,0,

yr(t) = g(℘(xr(t))),

(3.8)

where Er = W̃T
xr
EṼxr and the reduced nonlinear function fr(xr(t),u(t)) =

W̃T
xr
f(℘(xr(t)),u(t)).

3.2.2 Linear Petrov-Galerkin projection

Another successful and established approach to reduced nonlinear systems is to
apply the classical Petrov-Galerkin projection as discussed for linear systems in
Section 2.2.4. Substituting the linear approximation ansatz (2.34) in the FOM
(3.1) and premultiplying the overdetermined system with the projector P given
in (2.36) yields:

P(EVẋr(t)− f(Vxr(t),u(t))︸ ︷︷ ︸
Γ(Vxr(t)),u(t)

−r(t)) = 0. (3.9)

And enforcing the Petrov-Galerkin condition yields the desired ROM

Erẋr(t) = WT f(Vxr(t),u(t)), xr(0) = xr,0

yr(t) = g(Vxr(t)),
(3.10)

where Er = WTEV and xr,0 = (WTEV)−1WTEx(0).

3.3 Overview of nonlinear reduction methods

Since most practical, real-life dynamical systems are inherently nonlinear, this has
led to many research efforts from the past decades to reduce large-scale nonlin-
ear systems. Special classes of large-scale systems such as bilinear systems, DAE
systems, and Hamiltonian systems have been successfully reduced, see, e.g., Lall
et al. [177], Soberg et al. [272], Al-Baiyat et al. [3] and Fujimoto [121]. Polyno-
mial approximation of weakly nonlinear systems has been carried by Chen [82],
Rewienski and White [249, 250], and Benner [45]. Later on, the idea of reducing
certain nonlinear systems by transforming them into quadratic bilinear form has
also been proposed by Benner and Breiten [48] Gu [139], and Antoulas et al. [16].
Methods based on variational analysis were also proposed [47, 139, 232]. Besides
this, Krylov subspace methods for special nonlinear system classes have also been
studied in Refs. [62, 131].
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3.3.1 Quadratic Method

Proposed by Chen [82], this method approximates the nonlinear function f(.) in
(3.1) as a kronecker product formulation of x, which is given as:

f(x(t),u(t)) =f(0) +A1x(t) +A2(x(t)⊗ x(t))

+A3(x(t)⊗ x(t)⊗ x(t)) + ...+Bu(t)
(3.11)

where the matrices Ai ∈ Rn×n denote i-th partial derivative of f at x = 0. The
quadratic system thus obtained is given as:

Eẋ(t) = f(0) +A1x(t) +A2(x(t)⊗ x(t)) +Bu(t),

y(t) = g(x(t)).
(3.12)

The projection matrix V, in this method, is obtained as the basis of the Krylov
subspace given as:

colspan(V) = Kr(A
−1
1 ,A−1

1 B), (3.13)

and the reduced quadratic model is obtained by using the one-sided approximation
ansatz x ≈ Vxr in (3.12) given as:

Erẋr(t) = VTA1Vxr(t) +VTA2(Vxr(t)⊗Vxr(t)) +VTBu(t),

y(t) = g(Vxr(t)).
(3.14)

It is assumed that f(0) = 0 otherwise is taken as a part of input signal.

3.3.2 Bilinearization Method

Based on Carleman linearization of nonlinear systems [261], the bilinear form was
proposed by Bai et al. [33] and Phillips [231]. This involves the use of first two
terms of the series in (3.11), so as to approximate the nonlinear function as:

f(x(t),u(t)) ≈ f(0) +A1x(t) +A2(x(t)⊗ x(t)) +Bu(t). (3.15)

As such the bilinear, input-affine system is obtained as follows (with E = I):

ẋ⊗(t) = A⊗x⊗ +N⊗x⊗u(t) +B⊗u(t), (3.16a)

y(t) = C⊗x⊗, (3.16b)

where

x⊗ =

[
x(t)

x(t)⊗ x(t)

]
, A⊗ =

[
A1 A2

0 A1 ⊗ I+ I⊗A1

]
,

N⊗ =

[
0 0

B⊗ I+ I⊗B 0

]
,B⊗ =

[
B 0

]T
,CT

⊗ =
[
CT 0

]T
.

(3.17)
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After transforming the nonlinear system to bilinear form (3.16), there are several
choices of calculating the projection basis. One particular choice was proposed
by Philips and Joel [231]. It was shown that after constructing a series of Krylov
subspaces for given r1, r2, ..., rK , as follows:

colspace(V1) = Kr1(A
−1
⊗ ,B⊗), (3.18)

and

colspace(Vk) = Krk(A
−1
⊗ ,N⊗Vk−1), (3.19)

for 1 < k < K, the matrix V is calculated by taking the union of all the subspaces
spanned by columns of Vk, i.e.,

colspan(V) =
K⋃
k=1

{Vk}. (3.20)

Another choice of transformation matrix V was proposed by Bai and Skoogh [33],
which matches as many multimoments as the reduced model, and is given as:

colspace(V1) = Kr1(A
−1
⊗ ,A−1

⊗ B⊗), (3.21)

and for k > 1,

colspace(Vk) = Krk(A
−1
⊗ ,A−1

⊗ N⊗Vk−1), (3.22)

and the final transformation matrix V is constructed in a similar fashion, i.e.,

colspan(V) =
K⋃
k=1

{Vk}. (3.23)

After constructing the matrix V, the reduced bilinear system is then obtained by
using the approximation x⊗ = Vx̂⊗ in system (3.16) given as:

˙̂x⊗(t) = Â⊗x̂⊗ + N̂⊗x̂⊗u(t) + B̂⊗u(t), (3.24a)

y(t) = Ĉ⊗x̂⊗, (3.24b)

where

x⊗ = Vx̂⊗, Â⊗ = (VTA⊗V), N̂⊗ = VTN⊗V, B̂⊗ = VTB⊗ and Ĉ⊗ = CV⊗.

Another way of reducing bilinear systems is by using the Balanced Truncation
(BT) method for bilinear system method which was originally developed by Achar
and Nakhla [2], redeveloped by Condon and Ivanov [200], and also by Benner et
al.[49]. This method is similar to standard BT method for linear systems. Al-
though, this method outperforms moment-matching methods in terms of approx-
imating quality, it involves solving the generalized Lyapunov equation which is
computationally demanding.
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3.3.3 Trajectory Piecewise Linear Approximation (TPWL)

TPWL method replaces the polynomial approximation of the nonlinear system
with a piece-wise approximation. This method offers more robustness when deal-
ing with strong nonlinearities. The idea is to linearize the nonlinear function f(.)
at a number of linearization points xi(i = 0, 1, ..., l) in response to some training
input. The nonlinear function f(.) is then approximated by the weighted sum of
these linear models i.e., f(x(t)) ≈

∑l
i=0 wi(f(xi)+Ai(x(t)−xi)), and the original

system is represented as:

ẋ(t) =
l∑

i=0

wi(x(t))f(xi) +
l∑

i=0

wi(x(t))Ai(x(t)− xi)) +Bu(t),

y(t) = g(x(t)),

(3.25)

where wi, i = 0, 1, ..., l is a vector of weights and Ai is the Jacobian matrix of f(.)
at xi. The projection matrix V, in this case, is obtained as orthonormal basis of
the following Krylov subspace which spans the reduced state-space.

colspan(V) = span{A−1
0 B, ...,A

−(r−1)
0 B}. (3.26)

The reduction is then performed by using the approximation ansatz x(t) = Vxr(t)
in (3.25).

ẋr(t) =

 l∑
i=0

VTAiVw̃i(xr(t))

xr(t)

+
l∑

i=0

VT (f(xi −Aixi)w̃i(xr(t)) +VTBu(t),

y(t) = g(Vxr(t)).

Here, the weights w̃ depend on xr and can be computed using the information
about the distances

∥∥xr − xri

∥∥ of the (projected) linearization points VTxi from
the current state xr. An error bound for TPWL was proposed in Ref. [250] along-
with some discussion on stability and passivity preservation. A down-side of this
method, however, is the choice of an appropriate training input. The reduced
model loses accuracy if the training inputs are chosen far away from the actual
inputs. This happens because the computed trajectory departs from the actual
behavior of the state vector x(t).

In continuation with this, a polynomial piece-wise approximation was proposed
by Dong and Roychowdhury [93] instead of a linear piece-wise approximation for
each piece. Similar ideas later emerged in various studies such as presented by
Vasilyev et al. [297]. A more detailed review on piece-wise linearzation based
reduction methods can be found in Ref. [151].
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3.3.4 Proper Orthogonal Decomposition (POD)

One of the most successful nonlinear model order reduction method is the Proper
Orthogonal Decomposition (POD) [210, 58] also known as Karhunen-Loéve Trans-
form (KLT) or Principal Component Analysis (PCA). This method can be consid-
ered a general application of the SVD to the approximation of dynamical systems.

Let x(t1),x(t2), ...,x(tns) denote the snapshots of (3.1) taken at tj, j ∈ {1, ..., ns}
in the interval [0, T ]. Suppose ℵ represents the ensemble consisting the snapshots
{x(tj)}ns

j=1 i.e.,

ℵ = span{x(t1), ...,x(tns)}. (3.27)

Then, POD aims at finding an orthonormal basis {vi}ri=1 for ℵ that satisfies the
minimization problem given as:

min
{vi}ri=1

ns∑
j=1

∥∥∥x(tj)− r∑
i=1

〈
x(tj),vi

〉
vi

∥∥∥2
2

, (3.28)

subject to
〈
vi,vj

〉
= δij. In practice, (3.28) is solved by taking the SVD of the

snapshot matrixX ∈ Rn×ns (whose columns are the time displaced solutions of the
system) i.e, X = UΣVT , and first r << min(n, ns) columns of U are then utilized
to construct the orthonormal project matrix VPOD. The procedure is summed up
in Algorithm 2.

Algorithm 2 Proper Orthogonal Decomposition (POD)

Input: Snapshot matrix X = [x(t1) x(t2)... x(tns)], tolerance parameter ϵ.

Output: POD basis: VPOD

1: [U,Σ,VT] = svd(X), Σ =diag(σ1, σ2, ..., σrx).

2: VPOD = U(:, 1 : r), r s.t.,
∑rx

i=r+1 σi/
∑rx

i=1 σi < ϵ, rx is the number of non-zero
singular values of matrix Σ.

Note that, for the most MOR settings, the dimensions of the snapshot matrix
X ∈ Rn×ns with n > ns, i.e., the number of dimension of system is much greater
that than the number of snapshots, resulting in a “tall-and-skinny” matrix X.
Therefore, it is preferred to use a economy version of the SVD resulting in the
dimension of U ∈ Rn×ns ,Σ ∈ Rns×ns , and V ∈ Rk×ns (cf. Fig. 2.2)

Given its conceptual simplicity, POD is a straightforward data-driven approach
and performs satisfactorily well for a number of nonlinear systems. Also, the re-
duced model of size r can be selected according to the decay of singular values
for a given tolerance ϵ. However, there are some drawbacks associated with this
method. Firstly, the low-rank approximation via POD relies on expensive mea-
surements of the full-sized model for some training inputs utrain(t). This leads
to substantial offline computational costs, especially when the FOM is repeatedly
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solved for varying design parameters, initial or boundary conditions. Secondly, the
quality of ROM depends on the training inputs used while obtaining the snapshot
ensemble. If the latter doesn’t capture the system’s dynamics at all operating
points, then the performance of ROM degrades for scenarios for which it was not
trained.

Besides the classical POD technique, there exist several other methods which
are related to the POD method. Examples include balanced-POD proposed by
Willcox and Peraire [306], Kunisch and Volkwein [174], Hinze and Volkwein [150],
Kunisch and Volkwein [175], Grepl et al. [135] and Astrid et al. [28], Reduced
Basis methods by Quarteroni et al. [236, 149], empirical Gramians [179], the
shifted POD (sPOD) method by Reiss et al.[248] for advection-dominated PDEs,
and methods based on deep/manifold learning [227, 285, 183]. Also, POD has
been widely employed within the spatial least-square Petrov-Galerkin (LSPG)
framework [69, 70], and the recently developed space-time LSPG method [85]
involving the higher-order singular value decomposition (HOSVD).

3.3.5 Nonlinear balancing

The concept of balancing for nonlinear systems was first proposed by Scherpen
[267] which is an extension of balancing for linear systems in the sense that it
is based on input-output energy of the nonlinear system. This involves solving
two Hamilton-Jacobi-Bellman (HJB) PDEs representing nonlinear counterparts
of linear Lyapunov equations (2.40). However, for problems of large-scale nature,
the solution of HJB PDEs becomes highly expensive due to the curse of dimen-
sionality. Hence, state-dependent Lyapunov equations have been developed to
avoid this issue. These include differential balancing based on variational systems
and contraction theory by Kawano et al. [164], and dynamic balancing based on
dynamic controllability and observability extensions presented by Sassano et al.
[259, 260]. This further encouraged the development of energy-based methods and
the notion of Hankel operator, see e.g., Gray and Mesko [133], Scherpen and Gray
[266], Scherpen and Van-der-Schaft [268] and Fujimoto and Scherpen [122, 123].

3.4 Moment-matching in nonlinear systems

The relation between moments and Sylvester equation was first proposed by Gal-
livan et al. [126, 127]. Based on this, the notion of nonlinear moments was
firstly presented by Astolfi [23]. Since then, methods on linear moment match-
ing and, especially, nonlinear moment-matching (NLMM) have been developed
in many publications [24, 25, 26, 27, 29]. A class of (nonlinear) parameterized
ROMs achieving moment matching was defined in Ref. [154]. A two-sided, non-
linear moment matching theory was developed by Ionescu and Astolfi [155, 156].
The problem of MOR via moment-matching for linear and nonlinear differential
time-delay systems with discrete and distributed-delays was studied by Scarciotti
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and Astolfi [263]. In addition to this, the online estimation of moments of lin-
ear and nonlinear systems from input/output measurements has been proposed
in Ref. [264, 265]. The study presented new algorithms to construct ROM’s
that asymptotically match the moments of an unknown nonlinear system to be
reduced by solving a recursive, moving window, least-square estimation problem
using input/output snapshot measurements. In reference to this, Maria et al. [295]
developed a practical simulation-free, NLMM algorithm in which certain numer-
ical simplifications were proposed that avoid the expensive solution of Sylvester
PDE. Recently, a nonlinear MOR framework based on NLMM with dynamic mode
decomposition (DMD) has been proposed in Ref. [241]. The framework involves
the computation of the offline projection matrix V by the application of NLMM,
whereas the underlying nonlinearity is approximated via DMD modes. Also, a
parametric nonlinear MOR method based on NLMM has been proposed in Ref.
[240](see also [239, 237, 238, 242]). Faedo et al. [104] recently extended this idea
to wave energy systems. Furthermore, an optimal H2-norm based MOR method
using time-domain moment-matching was proposed by Ion Necoara and Ionescu
[216].

Similar to the notion of moments defined for linear systems in Section 2.2.7, we
describe the nonlinear enhancement of moment-matching for large-scale systems.
The idea is based on the concepts emerging from output regulation of nonlinear
systems [173], the center manifold theory [72], and the steady-state response of
nonlinear-systems [157, 67, 158]. We refer the reader to Ref. [243] for an excellent
review.
Consider the following nonlinear exogenous (signal-generator) system:

ζ̇(t) = ϖ(ζ(t)) ζ(0),= ζ0 ̸= 0, (3.29a)

u(t) = ϱ(ζ(t)), (3.29b)

where ζ ∈ Rr,ϖ(ζ) ∈ Rr → Rr and ϱ(ζ) ∈ Rr → Rm are smooth mapping such
that ϖ(0) = 0 and ϱ(0) = 0. It is hereby assumed that the exogenous system
(3.29) is observable (ϱ,ϖ, ζ0), i.e., the output trajectories corresponding to any
initial conditions do not coincide. Also, its is assumed that the point ζ0 is a stable
equilibrium (in ordinary sense of Lyapunov) such that inputs generated by such
a system remain bounded. Furthermore, the input signal u(t) is assumed to be
persistently exciting in time [157]. This implies that every point ζo is Poisson
stable, such that no trajectory can decay to zero as t→∞. When both the above
conditions are met, we define the signal generator to be “neutrally stable” [157]
i.e., if the output signal of such a signal generator is fed to the input of nonlinear
system (3.1), the steady-state of output of such an interconnection is guaranteed
to be well-defined. The signal generator thus essentially captures the requirement
that one is interested in studying the the behavior of system (3.1) only in specific
circumstances. The interconnection of exogenous system (3.29) with nonlinear
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system (3.1) is given as:

E
dx(t)

dt
= f(x(t),ϱ(ζ(t)), (3.30a)

y(t) = g(x(t)). (3.30b)

The steady-state of such an interconnection is given as:

y(t) = gτ (x0 − ℘(ζ0))︸ ︷︷ ︸
yp(t)

+g℘(ζ(t))︸ ︷︷ ︸
yh(t)

, (3.31)

where yp(t) is the transient component of the solution with nonlinear transient
mapping given by τ (x0), and yh(t) corresponds to the steady-state component of
the solution where the mapping ℘(ζ) is a local mapping defined in the neighbor-
hood of ζ = 0. Since the nonlinear system (3.1) is assumed to be exponentially
stable, therefore the transient solution decays exponentially, i.e., lim

t→∞
yh(t) = 0,

and yss(t) = g(℘(ζ(t))) is the steady-state response of the interconnected system.
Thus, interconnecting the nonlinear system (3.1) with the signal generator (3.29)
corresponds to exciting the nonlinear system with user-defined inputs. Now, to
provide a generalized notion of moments for nonlinear systems, the following as-
sumption is required (as provided in Ref.[26])

Assumption: The unique mapping ℘(ζ) solves the nonlinear Sylvester equation
given as:

E
∂℘(ζ(t))

∂ζ(t)
ϖ(ζ(t)) = f(℘(ζ(t)),ϱ(ζ(t))). (3.32)

By the center manifold theory, the interconnected system (3.30) possesses a locally
well-defined invariant manifold at (xeq, ζeq = (0,0)), given as M = {(x, ζ) ∈
Rn+r : x = ℘(ζ(t))} where ℘(ζ(t)) solves (3.32).

Definition 3.1 (Steady-state notion of nonlinear moments) [25, 26] The mo-
ment of system (3.1) at ϖ(ζ) is defined by function g(℘(ζ)) under the afore-
said assumptions. Furthermore, the 0-th nonlinear moment of system (3.1) at
(ϖ(ζ(t))),ϱ(ζ(t)), ζ0) is related to the (locally well-defined) steady-state response
yss(t) = g(℘(ζ(t))) where the mapping ℘(ζ) solves the nonlinear Sylvester equa-
tion (3.32). ▲

Based on Definition 3.1, the notion of nonlinear moment-matching in terms of
steady-state response matching can be formulated as follows:

Theorem 3.1 (Nonlinear moment-matching) [25, 26] The moments of the
nonlinear system (3.1) at (ϖ(ζ),ϱ(ζ), ζ0) coincide with the (well-defined) steady-
state response of the output of the interconnected system (3.30) when the aforesaid
assumptions hold. ▲
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gr(℘r(ζ))g(℘(ζ))

FOM ROM

Exogenous System/ Nonlinear-Signal Generator

ζ̇(t) = ϖ(ζ(t))
u(t) = ϱ(ζ(t))

Eẋ(t) = f(x(t),u(t))
y(t) = g(x(t))

Erẋr(t) =
∂φ(.)
∂x(t)

f(℘(xr(t),u(t)))

yr(t) = g(℘(xr(t)))

E
∂℘(ζ)

∂ζ
ϖ(ζ) = f(℘(ζ),ϱ(ζ)) Er

∂℘r(ζ)

∂ζ
ϖ(ζ) = fr(℘r(ζ),ϱ(ζ))

Moments ⇔ Steady-State Moments ⇔ Steady-State

=

Figure 3.1: Time-domain illustration of nonlinear moment-matching in terms of
steady-state response matching between FOM and ROM

Thus, similar to linear systems, a nonlinear reduced model can be defined that
achieves moment-matching with original system (3.1) at (ϖ(ζ),ϱ(ζ), ζ0).

Definition 3.2 (Nonlinear ROM via moment-matching) [25, 26] A reduced-
order model of the form (3.8), given as:

Erẋr(t) =
∂φ(ω(x(t),u(t)))

∂x(t)

∣∣∣∣
x(t)=℘(xr(t))

f(℘(xr(t),u(t))), xr(0) = xr,0,

yr(t) = g(℘(xr(t))),

(3.33)

of dimension r (r << n) matches moments with the full-order system (3.1) at
(ϖ(ζ),ϱ(ζ), ζ0), if the reduced nonlinear Sylvester equation given as:

Er
∂℘r(ζ)

∂ζ
ϖ(ζ) = fr(℘r(ζ),ϱ(ζ)), (3.34)

is uniquely solved by (gr(ζ)) such that

g(℘(ζ)) = gr(℘r(ζ)). (3.35)

▲

Thus, moment-matching for nonlinear systems can be interpreted as the exact
matching of the steady-state response of the FOM and ROM (cf. Fig. 3.1) when
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both systems are excited from the inputs from non-linear signal generator (3.29).
For other inputs, the steady state is interpolated. Note here that the Sylvester
equation unlike in the linear case, is state dependent, non-linear partial differential
equation of dimension (n× 1).

The projection-based technique to obtain a reduced-order model achieving
moment-matching is given by (3.8) with ℘(xr(t)) as the solution Sylvester PDE
(3.32). However, a non-projective approach consists of parametrizing the family
of ROMs achieving moment-matching with FOM (3.1) at (ϖ(ζ),ϱ(ζ), ζ0) w.r.t
the reduced input matrix function δ(xr(t)) : Rr → Rr×m yielding a ROM in
input-affine representation as follows:

ẋr(t) =ϖ(xr(t))− δ(xr(t))ϱxr(t) + δ(xr(t))u(t), (3.36a)

yr(t) =g(℘(xr(t))), (3.36b)

where the free mapping δ(xr) can be used to impose e.g. asymptotic stability,
passivity, a prescribed relative degree and zero dynamics.

3.5 Hyper-reduction in nonlinear systems

The nonlinear reduction methods reduce the number of equation from n to r
yielding the ROM structure (3.8) or (3.10) depending upon the type of projection
technique used. This results in a drastic reduction in the computational cost
associated with solving the linear system of equations via any time-integration
scheme. However, the complexity of evaluating the nonlinear term f(xr,u) still
remains as that of the original problem. For this, consider the nonlinear term of
the ROM (3.8) :

WT︸︷︷︸
r×n

f(Vxr(t))︸ ︷︷ ︸
n×1

=
〈
f(Vxr(t)),V

〉
. (3.37)

This inner product is solved by first expanding the variable xr(t) ∈ Rr to n-
dimensional vector Vxr(t) ∈ Rn which requires 2nr flops. Then, the nonlinearity
f(Vxr) is evaluated. Finally, the projection with the reduction basisW is solved to
obtain WT f(Vxr(t)). Thus, 4nr flops are required as a result of two matrix-vector
products required to form the argument of f , and then to form the projection. As
a result, solving the reduced system might still be costly as solving the full system.

Similar inefficiency occurs when solving the reduced model (3.8) for steady
nonlinear PDEs by Newton iteration. During each iteration, the Jacobian ma-
trix J(x) = ∂f(x)/∂x is solved besides the nonlinear function f , and the cost of
computation still depends on full-dimension n:

Jr(xr) = WT︸︷︷︸
r×n

J(Vxr)︸ ︷︷ ︸
n×n

V︸︷︷︸
n×r

(3.38)

i.e., the Jacobian function is first expanded in the high-dimension settings, and
then projected to obtain the reduced form. The computational complexity for
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computing the Jacobian is roughly O(2n2r+2nr2+2nr) for a dense J and 2n2r for
a sparse J. Hence, these numerical complexities renders the dimension reduction
techniques inefficient.

To address these challenges, various hyper-reduction scheme have been pro-
posed. The idea is to find a low-rank representation of the nonlinear function
and its Jacobian for an efficient reduction of the overall problem. These methods
are usually employed after the dimensionality reduction of state-space have been
performed. Next, we discuss some of the prominent hyper-reduction methods:

3.5.1 Polynomial system representation

One possibility is to express the nonlinear function analytically through polyno-
mial tensors to avoid evaluating the nonlinear terms on the element level within
the FE code. This is achieved by representing the nonlinear function f(x,u) as
a polynomial system using a Taylor series expansion (3.11) or a quadratic form
(3.12). Once a polynomial system representation is obtained, the dimensional re-
duction can be carried out using either a linear or nonlinear projection. Although
the full-order tensors are primarily sparse, their storage becomes prohibitive for
large n. This is especially true if the nonlinear function is represented by higher-
order polynomials like cubic or quartic. To illustrate the idea, consider a cubic
representation of a nonlinear function f as follows:

f(x) = Ax+B(x⊗ x) +C(x⊗ x⊗ x). (3.39)

One way to obtain the reduced approximation of f is by using linear bases V,W ∈
Rn×r for projection. The reduced model is then given as:

fr(xr) = Arxr +Br(xr ⊗ xr) +Cr(xr ⊗ xr ⊗ xr), (3.40)

where the reduced matrices

Ar = WTAV,Br = WTB(V ⊗V), and Cr = WTC(V ⊗V ⊗V),

of dimensions A ∈ Rr×r,Br ∈ Rr×r2 , and C ∈ Rr×r3 . The smaller costs of eval-
uating the reduced polynomial function fr gives considerable saving than solving
WT f(Vxr).

3.5.2 Piecewise linear approximation

Another possibility is to represent the nonlinear function by a piecewise linear
approximation (PWL), as follows:

fr(xr) = WT

 l∑
i=0

wi(xr(t))f(xi) +
l∑

i=0

wi(xr(t))Ai(Vx(t)− xi))

 . (3.41)

The nonlinearity is approximated as a weighted interpolation of reduced linearized
matrices, obtained via linearizations at different given points {xi}li=0.
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3.5.3 Classical hyper-reduction methods

Unlike the above mentioned methods, the classical hyper-reduction methods like
the Discrete Empirical Interpolation (DEIM) [80] by Chaturantabut and Sorensen
or the Energy-Conserving Sampling and Weighting (ECSW) [106] method by
Farhat et al. employ a different approach. The idea is to compute the nonlin-
ear function only at certain grid points of the mesh.

3.5.4 Discrete Empirical Interpolation Method (DEIM)

The core ideas of DEIM emerge from empirical interpolation method(EIM) [36] by
Barrault et al., Gappy POD [305, 103], and the missing point estimation method
[28] by Astrid et al.

In DEIM, the non-linear function f(x) is projecting onto an approximate sub-
space spanned by a basis of dimension md << n, i.e.,

f(τ) ≈ Udc(τ), (3.42)

where for nonlinear time dependent PDEs τ = t, Ud = [u1, ...,umd
] ∈ Rn×md , and

c(τ) as the coefficient vector. Next, consider a boolean matrix P with:

P = [ep1 , ...., epmd
] ∈ Rn×md , (3.43)

where epi = [0, ..., 0, 1, 0, ..., 0]T ∈ Rn is the pith column of the identity matrix
In ∈ Rn×n for i = 1, ..,md, then

PTf(τ) = (PTUd)c(τ), (3.44)

and approximation (3.42) becomes:

f(τ) ≈ Udc(τ) = Ud(P
TUd)

−1PTf(τ), (3.45)

where PTUd is nonsingular. The DEIM algorithm to obtain p⃗ = [p1, ..., pmd
]T is

as follows:

Algorithm 3 Discrete Empirical Interpolation Method (DEIM)[80]

INPUT: {ul}md
l=1 ⊂ Rn linearly independent

OUTPUT: p⃗ = [p1, ..., pmd
]T

1: [|ρ|, p1] = max{|u1|}.
2: Ud = [u1], P = [ep1 ], p⃗ = [p1].

3: for l = 2 to md do

4: Solve (PTUd)c = PTul for c

5: r = ul −Udc

6: [|ρ|, pl] = max{|r|}

7: Ud ← [Ud ul], P← [P epl ], p⃗←

[
p⃗
pl

]
.

8: end for
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From the DEIM Algorithm, a set of indices are constructed inductively on the
input basis. The input basis matrix ul is obtained by sampling the nonlinear
function f at certain time-instances t = 1, 2, ..., tns . Thus, similar to the snapshot
matrix X = [x(t1) x(t2)... x(tns)] ∈ Rn×ns obtained for POD, the nonlinear func-
tion snapshots F = [f(x(t1)) f(x(t2))... f(x(tns))] ∈ Rn×ns are gathered from the
FOM for some training signal utrain(t). After that, the SVD of the matrix F yields
the columns of matrix ul, where the order of the input basismd is chosen according
to the dominant singular values of the nonlinear function snapshot matrix. The
DEIM approximation of the nonlinear term f() then reads:

WT f(Vxr(t)) = WTUd(P
TUd)

−1PT f(Vxr(t)), (3.46)

and in case the nonlinear function f is evaluated component-wise at its input
vector, we can write (3.46) as:

WT f(Vxr(t)) = WTUd(P
TUd)

−1︸ ︷︷ ︸
precomputed: r×md

f(PTVxr(t))︸ ︷︷ ︸
md×1

(3.47)

Since the term WTUd(P
TU)−1 is independent of t, it can be precomputed by

solving the system of ODEs. Furthermore, PTVxr(t) ∈ Rmd can be obtained by
extracting the rows p1, p2, ..., pmd

of V, and then multiplying against xr which
incurs 2rmd cost. Here the indices {p1, p2, ..., pmd

} are obtained via Algorithm
(3). Thus, the overall cost of evaluating the nonlinear term f , via DEIM, becomes
roughly O(4rmd) which is is independent of n.

Similarly the reduced Jacobian Jr(xr) can be approximated via DEIM as:

Jr(xr) = WTUd(P
TUd)

−1︸ ︷︷ ︸
precomputed: r×md

J(PTVxr(t))︸ ︷︷ ︸
md×md

PTV︸ ︷︷ ︸
md×r

(3.48)

DEIM is a straightforward approach and can be applied immediately after any
projection based model reduction technique. An error bound of the approximation
is also available [80] which is given as:∥∥f − fDEIM

∥∥ ≤∥∥(PTUd)
−1
∥∥
2
E∗(f), (3.49)

where E∗(f) =
∥∥∥∥

2
is the minimum 2-norm error of f . There is good motivation of

using DEIM especially with POD, as the time snapshots required for the DEIM
are already obtaining while training POD. Thus, POD-DEIM is considered as a
benchmark nonlinear MOR reduction technique for reducing both the state as well
as the nonlinear function.

Besides the classical DEIM approach, there also exists different variants and
extension of this method. For instance, the QDEIM [94] by Drmac and Gugercin is
even more efficient that the classical DEIM approach. Similarly, the unassembled
DEIM (UDEIM) [286] technique proposed by Paolo and Daniel extends the regular
DEIM to FE applications. A symmetrized version of DEIM has been proposed for
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nonlinear port-Hamiltonian systems [79]. The matrix version of DEIM (MDEIM)
[308] proposed by Wirtz et al. for matrix-DEIM approximation of nonlinearity
Jacobians.

Furthermore, the Gauss-Newton with Approximated Tensors (GNAT) method
[70] by Carlberg et al. is another famous DEIM-related hyper-reduction technique
which has also been recently extended to structural dynamics [71].

3.6 Issues in nonlinear MOR

Although nonlinear MOR methods have seen a prominent success, there are still
some unresolved queries/issues, which are enlisted as follows:

1. A common issue among all nonlinear reduction methods is the lack of prac-
tical global error bounds for the reduced-order model.

2. Nonlinear moment-matching based MOR method presented in Refs.[24, 25,
26, 27] involves the a priori solution of the nonlinear, state-dependent, Sylvester-
like PDE (3.32) which is computationally expensive.

3. There is no apriori knowledge of acceptable training inputs and linearization
points in the TPWL method.

4. An optimal choice for the number of multi-moments in the bilinearization
methods is not known apriori.

3.7 Chapter summary

In summary, we have discussed the model order reduction problem in nonlinear dy-
namical systems. We have explained the use of linear and nonlinear Petro-Galerkin
projection frameworks in nonlinear systems. Then, we presented an overview of
some of the most widely used MOR approaches for nonlinear models. We have
also described the moment-matching in nonlinear systems, which is an extension of
the linear systems. Finally, we have addressed the issue of reducing the nonlinear
function, and in this regard, discussed various hyper-reduction procedures.



Chapter 4

Efficient Frameworks for Nonlinear
Model Order Reduction

In the previous chapter, we explained the nonlinear model order reduction via
linear and nonlinear projection methods. However, we can also classify the re-
duction methods based on their fundamental methodology. The first group is the
simulation-based methods. These methods rely on taking the expensive measure-
ments of the full order model to form the reduced manifold. Examples include
Proper Orthogonal Decomposition (POD), Trajectory Piecewise Linear Method
(TPWL), empirical Gramians, balanced POD, and the Reduced Basis (RB) method.

On the other hand, there exist another group of methods that are based on
simulation-free approaches. These methods extract the most dominant nonlinear
dynamics by system-theoretic measures rather than from simulated data. These
include modal derivatives, nonlinear balanced truncation, Krylov subspace meth-
ods for polynomial systems, and the nonlinear moment-matching method. The
latter method represents a promising approach from a system-theoretic perspec-
tive, as it avoids the expensive measurements of the full system to obtain the
reduced model. Thus, in the following, we will focus on this method for reducing
general nonlinear systems.

In this chapter, we will use some numerical simplifications for the underlying
Sylvester nonlinear PDE to arrive at a system of nonlinear algebraic equations
in a step-by-step manner. Then, we will propose some efficient reduction frame-
works for nonlinear systems. These are (i) Nonlinear Moment-Matching (NLMM)
with Discrete Empirical Interpolation Method (DEIM), (ii) Nonlinear Moment-
Matching (NLMM) with Dynamic Mode Decomposition (DMD), and (iii) Second-
Order Nonlinear Moment-Matching with DEIM (SONLMM-DEIM) (discussed in
Chapter 5). We will extensively discuss each reduction framework and provide nu-
merical algorithms for their implementation. Finally, we will illustrate the appli-
cation of these algorithms on different nonlinear systems and present a qualitative
and quantitative comparison of reduced models obtained with POD-DEIM.

56
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4.1 Approximated nonlinear moment matching

The nonlinear model reduction via moment-matching described in Section 3.4 re-
quires the solution of the nonlinear, state-dependent Sylvester PDE (3.32) which
is computationally demanding. It’s solution either requires symbolic computa-
tions or numerical solutions. The latter involves solving a system of nonlinear
ODEs after the reduced spatial discretization of the PDE. As we intend to reduce
large-scale nonlinear systems, only numerical methods come into consideration,
which ideally should avoid any costly simulation. As such, certain numerical sim-
plifications are proposed by Maria et al. [296, 295] to reduce the computational
costs involved in solving the Sylvester PDE. These simplifications are motivated
by POD method, which uses a linear projection and time-snapshots to reduce
the nonlinear system. The result is that the nonlinear PDE is converted into a
system of nonlinear algebraic equations, and a numerically feasible algorithm is
obtained for the dimension reduction. Note that these simplification are related to
asymptotic expansion (Poincaré/naive expansion) [213, 298, 162] or the variational
approach [252] for approximating the solution of nonlinear differential equations.

4.1.1 Simplifications

The numerical simplifications to solve the Sylvester PDE (3.32)are three-fold (i)
using a linear projection, (ii) to consider the column-wise operation of the equa-
tion, and (iii) to collect time-snapshots for discrete samples in time. Now, depend-
ing on the type of signal generator involved, we distinguish between the following
cases:

Nonlinear Signal Generator

1. Linear projection: Instead of using a non-linear projection, x(t) = ℘(ζ(t))
in 3.1, we use a linear projection x(t) = Vζ(t). This is motivated by the fact
that the linear projections are successfully utilized even in nonlinear model
reduction. As a result of this, PDE (3.32) becomes:

f
(
V(ζ(t)),ϱ(ζ(t))

)
− EVϖ(ζ(t)) = 0. (4.1)

where ϖ(ζ(t)) and ϱ(ζ(t)) are user-defined, and V ∈ Rn×r is the desired
solution.

2. Column-wise consideration: Using a linear projection V makes the system
(4.1) under-determined since n equations are to be solved for n×r unknowns
in V ∈ Rn×r. This problem is avoided by considering the equation (4.1)
column-wise for each vi ∈ Rn, i = 1, ..., r, given as:

f
(
vi(ζi(t),ϱi(ζi(t))

)
− Eviϖi(ζi(t)) = 0, (4.2)

where ζi(t) ∈ Rr and V = [v1, ...., vr].
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Kindly note that the column-wise consideration has the limitation that (4.1)
is generally not fulfilled, since the couplings in Vζ(t),Vϖ(ζ(t)) and ϱ(ζ(t))
are not being considered. Hence, the column-wise consideration constitutes
a further simplification/approximation step, which is naturally restricting
the universality of the original nonlinear moment matching framework of
[26].

3. Time discretization: Unlike the linear case, where the Sylvester equation
(cf. 2.75) turns out to be a constant linear matrix equation, the nonlinear
Sylvester equation (cf. 3.32) is a state-dependent equation, i.e., the state-
vector ζ(t) cannot be factored out. Hence, a time-discretized version of 3.32
is solved instead with time snapshots [tk], k = 1, .., K, similar as in POD.
Consequently, using a time-discrete version of the nonlinear signal generator
(ϖi(ζi(tk)),ϱi(ζi(tk)), ζ0,i) 4.2 becomes:

f
(
vik(ζi(tk),ϱi(ζi(tk))

)
− Evikϖi(ζi(tk)) = 0. (4.3)

Note that the discrete solution of ζi(tk) of the nonlinear signal generator
ODE must be given or computed via simulation before solving (4.3).

Linear Signal Generator

One can also try to interconnect the non-linear system (3.1) with a linear sig-
nal generator (2.76), where ϖ(ζ(t)) = Ξζ(t) and ϱ(ζ(t)) = Ψζ(t) with Ξ =
Cr×r,Ψ ∈ Cm×r.

1. Linear projection: Using a linear projection (4.1) becomes:

f(V(ζ(t),Ψ(ζ(t))− EVΞζ(t) = 0, (4.4)

where the triple (Ξ(ζ(t)),Ψ(ζ(t), ζ0) is user defined. Note that connecting a
linear signal generator (2.76) with a nonlinear system corresponds to exciting
the nonlinear system with exponential inputs given as: u(t) = ΨeΞtζ0.

2. Column-wise consideration: A column-wise consideration of 4.4 yields:

f
(
viζi(t),Ψi(ζi(t))

)
− EviΞiζi(t) = 0. (4.5)

3. Time discretization: Using the time-discrete signal generatorΞiζi(tk),Ψiζi(tk)
in (4.5) we have:

f
(
vik(ζi(tk),Ψi(ζi(tk))

)
− EvikΞiζi(tk) = 0. (4.6)

Again note that the discrete solution of ζi(tk) of the linear signal generator
ODE is analytically given by exponential functions with exponents Ξi to
simulate the linear signal generator.
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Zero Signal Generator

Finally, one can also use a zero signal generator defined as:

ζ̇(t) = ϖ(ζ(t)) = 0, (4.7a)

u(t) = ϱ(ζ0). (4.7b)

This is a special case where ζ(t) = ζ0 and u(t) = constant. Connecting such
a signal generator to a nonlinear system corresponding to exciting the nonlinear
system with constant input functions.

1. Linear projection: For this case, (4.1) becomes

f
(
Vζ0,ϱ(ζ0)

)
= 0. (4.8)

2. Column-wise consideration: This operation yields

f
(
viζ0i,ϱi(ζ0i)

)
= 0, (4.9)

with ζ̇i(t) = 0,ui(t) = ϱi(ζ0i) = constant, and ζi(t) = ζ0i = constant for
i = 1, .., r.

3. Time discretization: Since (4.9) represents a state-independent equation,
hence no time-discretization is needed for this case.

Now using these simplification for the nonlinear Sylvester PDE (3.32), the algo-
rithm to obtain the orthonormal basis via nonlinear moment-matching is presented
below [296]:

4.1.2 Algorithm for Nonlinear Moment Matching

Algorithm 4 Nonlinear Moment Matching (NLMM): For offline basis generation

INPUT: f(x,u),J(x,u),ϖi(ζi(tk)),ϱi(ζi(tk)), ζi(tk), initial guess v0,ik, reduced
rank order r
OUTPUT: Orthogonal basis: VNLMM

1: for i = 1 : r do

2: for k = 1 : K do

3: fun = @(v) f(v ∗ ζi,k,ϱi(ζi,k))− Ev ∗ϖi(ζi,k) ▷ residual

4: Jfun = @(v) J(v ∗ζi,k,ϱi(ζi,k))ζi,k−Eϖi(ζi,k) ▷ Jacobian of residual

5: vik = NewtonRaphson(fun,v0,ik, Jfun)

6: VNLMM(:, (i− 1) ∗K + k)← vik

7: VNLMM = GramSchmidt(vik,VNLMM) ▷ optional
8: end for
9: end for
10: [U, Σ, ˜] = SVD(VNLMM); VNLMM = U(:, 1 : r)
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The above algorithm is used to generate the basis VNLMM for the reduced
subspace. Note that we have presented the most general form of the algorithm,
whereby a nonlinear signal generator has been employed. One can use a suitable
linear or zero signal generator as well. Consequently, lines 3 and 4 of Algorithm 4
will change. The algorithm employs two nested for loops to simulate each signal
generator i = 1, .., r at each collocation time shift k = 1, .., K. Jfun denotes the
analytical Jacobian of the nonlinear function fun, which is provided to speed up
the process.

NLMM is “simulation-free” in the sense that it does not require the numerical
integration of the large-scale nonlinear system (3.1). However, it involves the
solution of (at most) r.K nonlinear systems of equations (NLSE) of full order
dimension n. These are solved using an implicit Newton Raphson scheme (cf.
line 5, Algorithm 4) to generate the columns of VNLMM. Finally, the redundant
columns of VNLMM are truncated via the SVD scheme. This is in contrast with the
POD method whereby to simulate the FOM, an NLSE has to be solved implicitly
at each time step which results in increased computational costs.

4.2 NLMM-DEIM

Now, we are ready to introduce the first practical reduction framework for non-
linear systems, i.e., the nonlinear moment-matching with discrete empirical inter-
polation method (NLMM-DEIM). While NLMM avoids the expensive simulation
of the underlying nonlinear Sylvester PDE (3.32), as illustrated in the previous
section, the DEIM (Algorithm 3) further reduces the online cost of evaluation of
nonlinear terms. This substantially reduces the overall computational costs to ob-
tain the orthonormal projection basis. The numerical algorithm for this framework
is as follows:

Algorithm 5 NLMM-DEIM

Input: FOM ẋ(t), Signal Generator ζ̇(t), r : approximating rank for NLMM,
and md number of DEIM modes.

1: Compute VNLMM following Algorithm 4 ▷ orthogonal basis
2: Obtain function snapshots F = [f(x(t1)) f(x(t2))... f(x(tns))]

3: Calculate [ul, Σd, ˜] = SVD(F) ▷ nonlinear snapshots
4: Obtain Ud,P and p⃗ from Algorithm 3 ▷ call DEIM

5: Construct the reduced model (3.10) with the reduced nonlinear function ob-
tained from (3.47)

6: Integrate (3.10)

7: Project back full solution
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4.2.1 Case studies

We will now demonstrate the performance of the proposed NLMM-DEIM frame-
work. For that, we consider the two nonlinear benchmark models: the nonlinear
viscous Burgers’ equation and the FitzHugh-Nagumo model. Before we proceed
with the numerical validation, we enlist some details concerning all the numerical
models presented in this thesis:

1. All the numerical simulations are performed in-silico on MATLAB® R2019a
version 9.6.0 running on Intel Core™ i7-4790 CPU @3.60GHz with 12GB
RAM.

2. All ROMs (except the interpolated ones) are obtained via the one-sided
Galerkin projection with W = V and the local basis are made orthogonal,
i.e. VTV = I.

3. All the FOMs and ROMs are integrated using the implicit Euler’s scheme
within the Newton Raphson method having a relative tolerance of 10−3.

Nonlinear viscous Burgers’ equation

Burgers’ equation is studied under various areas of applied mathematics such as
gas dynamics, fluid mechanics, traffic flow, non-linear acoustics, theory of shock
waves, and in continuous stochastic processes. Due to the presence of viscosity
and convection terms, it’s structure roughly matches with Navier-Stokes equation.

The one-dimensional, parabolic, quasi-linear, viscous Burgers’ equation is given
as:

∂u

∂t
(x, t) + u(x, t)

∂u

∂x
(x, t) =

1

Re

(
∂2u

∂x2
(x, t)

)
x ∈ (0, L), t ∈ [0, T ], (4.10)

subject to the following initial and boundary conditions:

u(x, 0) = 0.1, (4.11a)

u(0, t) = r(t);
du

dx
(L, t) = 0, (4.11b)

where Re represents the Reynold’s number and influences the effect of diffusion.
For our evaluations, we selected Re = 100 and the length of spatial domain L = 1.
After a semi-discretization using finite-difference scheme with n grid points, we
obtained the following quadratic-bilinear structure of the state-space model:

ẋ(t) = Ax(t) +H (x(t)⊗ x(t)) + (Nx(t) +B)r(t), (4.12)

where x(t) ∈ Rn and (x⊗ x) is the Kronecker product. The matrices A,H, and
N can be seen in Appendix (A.1). A single control input was applied at a time
on the left boundary, and the FOM was solved using the implicit Euler’s method.
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To proceed with the ROM via NLMM-DEIM, Algorithm 5 was employed.
Another ROM was obtained via POD for the sake of comparison. Note that
NLMM was trained offline for the inputs generated by the chosen signal generator.
However, in the online evaluation of the ROM, two different test inputs were used
r1(t), and r2(t). In the case of POD, the training and the test inputs were kept
the same. This deliberate choice of inputs was made to test the true potential
of NLMM-DEIM. The various parameters used for this test case are presented in
Table 4.1.

The output response and the error plot of the full and the ROMs obtained
via NLMM-DEIM are presented in Fig. 4.1 for the two test signals. As can be
seen, the ROMs faithfully capture the dynamics of the original system for both the
test cases. Quantitatively, the comparison of computational times for the offline
and online phase are presented in Table 4.2 along with the approximating errors
in Table 4.2. The comparison shows that NLMM requires considerably less time
than POD to compute the projection basis for both the test cases and for different
choices of reduced dimensions. As far as the online evaluations of the ROMs
are considered, the DEIM has further reduced the simulation times by efficiently
evaluating the underlying nonlinear terms for both cases.

Table 4.1: Burgers’ equation: Parameters of the selected scenarios

Method Parameters

Full model n = 500, L = 1, t ∈ [0, 30s], Re = 100, h = 0.01s

NLMM r = (10, 20), ζ̇(t) = tanh(t) + 5e−4, i = 1, K = 51
DEIM md = (10, 20), ns = 250
POD r = (10, 20)
Test Inputs r1(t) = 0.5(cos(2π/10)t), r2(t) = sign(t)

Table 4.2: Burgers’ equation: Computational times for both test cases

method size
offline time (s)

(test 1)
online time (s)

(test 1)
offline time (s)

(test 2)
online time (s)

(test 2)

FOM 500 - 559.69 - 208.57
POD 10 543.89 (300 NLSE) 7.931 209.81 5.323
POD 20 543.92 (300 NLSE) 13.65 209.81 8.549

NLMM-
DEIM

10 8.346 (51 NLSE) 2.452 3.345 1.312

NLMM-
DEIM

20 11.331 (51 NLSE) 4.633 5.358 1.531
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Figure 4.1: Burgers’ equation: Top row: input r(t) = 0.5(cos(2π/10)t), bottom
row: input r(t) = sign(t), (left) full order model, (middle) NLMM-DEIM ROM,
(right) point-wise relative error of ROM

Table 4.3: Burgers’ equation: Approximation errors for both test cases

input norm
POD NLMM-DEIM

r = 10 r = 20 r = 10 r = 20

r1(t)
L1 1.04e−9 1.87e−11 9.20e−5 8.60e−7

L2 8.13e−11 1.37e−12 7.24e−6 6.91e−8

L∞ 2.47e−11 1.73e−13 9.9e−7 8.74e−9

r2(t)
L1 7.64e−9 8.8e−4 1.58e−9 5.75e−6

L2 5.75e−10 5.68e−5 1.21e−10 3.70e−7

L∞ 4.34e−11 3.69e−6 9.31e−12 2.41e−8

Fitz-Hugh Nagumo model

The FitzHugh-Nagumo (FHN) model is a simplified version of the Hodgkin-Huxley
model. The FHN model is used to describe the activation and deactivation dy-
namics of a spiking neuron. This model has been extensively used in literature
for POD [80] and quadratic-bilinear MOR [62, 131]. The underlying dynamics are
governed by a coupled PDE-ODE system given as:

ϵ
∂v

∂t
(x, t) = ϵ2

∂2v

∂x2
(x, t) + f(v(x, t))− ω(x, t) + g, (4.13a)

∂ω

dt
(x, t) = Rv(x, t)− γω(x, t) + g, (4.13b)
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where the nonlinear function f(v) = v(v − 0.1)(1 − v) with the initial and
boundary condition defined as:

v(x, 0) = 0, ω(x, 0) = 0, x ∈ [0, L], (4.14a)

∂v

dt
(0, t) = −i0(t),

dv

dx
(L, t) = 0, t ∈ [0, T ]. (4.14b)

A spatial discretization of the underlying coupled nonlinear PDE into l elements
yields an input-affine state-space model of n = 2l degrees of freedom. The model
equation is given by:

Eẋ(t) = Ax(t) + f(x(t)) +Bu(t),

y(t) = Cx(t),
(4.15)

where the state variables x = [vT wT ] represent the voltage and recovery voltage
at each spatial element. The control input u(t) = [i0(t), 1]

T is applied on the left
boundary (x = 0), and the desired output was measured on the right boundary
(x = L). Depending upon the amplitude of the input source i0(t), different neu-
ronal behaviors can occur. For example when the stimulus i0(t) exceeds a certain
threshold, a resting behavior (limit-cycle oscillations) can be observed. Similarly,
a saturated behavior is recorded for higher currents. Depending upon the nature
of the system, the various parameters of the FOM, POD and NLMM selected are
enlisted in Table 4.4.

For the application of NLMM, a single signal generator was selected by pre-
analyzing the value range that the signal ζ(t) covers in the time span tk ∈ [0, 5s].
For DEIM, 500 snapshots of the nonlinear terms were captured, and the reduced
basis for the nonlinear function f() was constructed. The numerical results are
presented in Figs. 4.2 and 4.3 whereas the approximation errors and simulation
times are enlisted in Tables 4.5 and 4.6 respectively.

As expected, NLMM required lesser computational times to obtain the reduc-
tion basis than POD. This is because of the lower number of NLSEs that need to
be solved in NLMM. On the other hand, POD produced more accurate solutions
than NLMM due to extensive information captured via snapshots during the train-
ing phase. However, POD needed several different training simulations to capture
other neuron behaviors like resting, spiking, and blocking, which NLMM selec-
tively captured without the expensive offline simulations. Regarding the online
phase, the speed-up gained through dimension reduction was further enhanced via
DEIM.
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Table 4.4: FHN model: Parameters of the selected scenarios

Method Parameters

Full model n = 2000, L = 1, t ∈ [0, 15s], ϵ = 0.015, R = 0.5, γ = 2, g = 0.05

NLMM r = (22, 33), ζ̇(t) = ζ(t) + 0.3, i = 1, K = 41
DEIM md = (25), ns = 500
POD r = (22, 33)
Test Inputs i0(t) = 5.104t3e−15t

Figure 4.2: FHN model: Comparison of the output responses (left) output re-
sponses (right) point-wise relative error

Figure 4.3: FHN model: spiking: (left) phase portrait, (right) limit cycle behavior
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Table 4.5: FHN model: approximation errors

output norm
POD NLMM-DEIM

r = 22 r = 33 r = 22 r = 33

y1(t)
L1 5.8e−4 6.28e−9 3.20e−6 2.13e−7

L2 4.26e−5 4.66e−10 2.24e−5 1.30e−8

L∞ 1.45e−5 2.15e−10 3.3e−7 2.28e−9

y2(t)
L1 1.16e−3 1.78e−5 7.3e−3 3.36e−5

L2 4.32e−4 7.39e−7 2.3e−3 1.35e−5

L∞ 6.46e−5 1.06e−7 1.4e−3 1.41e−7

Table 4.6: FHN model: computational times

method size offline time (s) online time (s)

FOM 2000 - 551.21
POD 22 543.45 (500 NLSE) 51.45
POD 33 543.45 (500 NLSE) 57.19

NLMM-DEIM 22 21.20 (41 NLSE) 5.65
NLMM-DEIM 33 24.01 (41 NLSE) 7.30

4.3 NLMM-DMD

The NLMM-DEIM framework described in previous section works satisfactorily
for a variety of nonlinear systems [237, 242, 238, 239]. However, the scheme can be
considered as a semi non-intrusive MOR approach. This means that it requires
the solution of the nonlinear function f(x,u) and the Jacobian function A(x,u)
within the Newton Raphson scheme to obtain the orthonormal basis vectors with-
out the need for an analytical expression of the governing equations (3.1). These
can rather can be evaluated within any commercial FE software package and hence
obtain VNLMM. However, for the evaluation of the ROM via projection, the gov-
erning equations are needed, making the scheme semi non-intrusive. Presently,
the research community has increased interest in developing non-intrusive-based
reduction methods that aim to learn the reduced models from data. This en-
ables the application of MOR techniques where the operators of high-dimensional
systems are unavailable. In what follows, we describe how dynamic mode decom-
position can be used as a complete non-intrusive method to reduce the underlying
nonlinear functions.



4.3. NLMM-DMD 67

4.3.1 Dynamic Mode Decomposition

Dynamic mode decomposition (DMD) stems from the works of Bernard Koopman
[170] in 1931, which was later revived in the studies presented by Mezic et al. [207,
208, 209]. This method was originally used to decompose complex flows into simple
spatial-temporal coherent structures. Schmid [269, 270] first defined the DMD
algorithm, and demonstrated its applications to high-dimensional fluid data. This
method is used to find the best-fit linear operator (aka Koopman operator) that
progresses high-dimension measurements forward in time [288]. More specifically,
DMD estimates the modes of Koopman operator which is an infinite-dimensional
linear operator that represents the flow of a nonlinear dynamical system on the
Hilbert space of measurement functions of states. DMD can be defined as:

Definition 4.1 (Dynamic Mode Decomposition) [176]

Given a dynamical system

ẋ(t) = f(x(t)), (4.16)

with two sets of data:

X1 =

 x(t0) x(t1) · · · x(tk−1)

 ,

and X2 =

 x(t1) x(t2) · · · x(tk)

 ,

where f is a nonlinear flow map, and x(t1),x(t2)...,x(tk) represent the snapshots
measurements at t = {1, 2, ..., k}. DMD computes the leading eigendecomposition
of the best-fit linear operator A relating the data X2 ≈ AX1, with:

A = X2X1
†, (4.17)

and where † denotes the Moore-Penrose pseudoinverse. ▲
This best-fit linear operator characterizes a linear dynamical system that advances
snapshot measurements forward in time i.e;

x(k + 1) ≈ Axk, (4.18)

Also, A can mathematically be defined as:

A = argmin
A
∥X2 −AX1∥F = X2X1

† (4.19)

Usually, the operator A is ill-conditioned for large-scale systems and in practice,
DMD computes the eigendecomposition of A by a reduced rank representation Ã.
As a result, the following proxy for (4.16) is established:

˙̃x(t) = Ãx̃(t), (4.20)
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whose solution is given as

x̃(t) =
m∑
i=1

biΨie
(ωit), (4.21)

where mD is the reduced DMD rank, Ψi,ωi are the eigenfunctions of Ã and bi

are the initial conditions. The procedure is described as follows [288]:

1. Obtain the SVD of X1

X1 ≈ ÛΣ̂V̂∗,

with Û ∈ Cn×mD , Σ̂ ∈ CmD×mD , V̂ ∈ Ck×mD (mD ≤ k) and ∗ represents the
conjugate transpose operation.

2. Now compute the full matrix A according to (4.17)

A = X2V̂Σ̂
−1
Û∗,

and consequently, Ã can be obtained by projecting A onto the left singular
vectors Û

Ã = Û∗AÛ = Û∗X2V̂Σ̂
−1
.

3. Next, evaluate the spectral decomposition of Ã as

ÃΥ = ΥΛ,

where the DMD eigenvalues are the diagonal entries of Λ which also cor-
respond to eigenvalues of A, and the eigenvectors of Ã are the columns of
Υ.

4. Finally, the high-dimensional DMD modes VDMD are obtained using the
eigenvectors Υ and time-displaced snapshot matrix X2, given as:

VDMD = X2V̂Σ̂−1Υ.

The pseudo-code summarizing the DMD procedure is given in Algorithm
(6).

Algorithm 6 DMD Mode Extraction

Input: Snapshots {x(t0),x(t1), ..,x(tk)}
Output: Projection Matrix VDMD

1: Set X1 = [x(t0), ...,x(tk−1)], X2 = [x(t1), ...,x(tk)]

2: Û, Σ̂, V̂∗ = SVD(X1)

3: Define Ã = Û∗X2V̂Σ̂−1

4: Solve the eigenvalue problem: [Υ,Λ] = eig(Ã)

5: VDMD = X2V̂Σ̂−1Υ

DMD can also be used as a Galerkin projection framework (see [5]). However,
this may additionally require the orthogonalization of the DMD modes using a
Gram-Schmidt procedure.
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4.3.2 Application of DMD in dimensionality reduction

In the following, we will demonstrate how DMD can can be used to obtain low-rank
approximations of the nonlinear function as a substitute over DEIM. Consider the
nonlinear snapshots {f(x(t0)), f(x(t1)), .., f(x(tk))} taken from (3.1). Then, the
DMD approximation of the nonlinear function f(x(t)) via Algorithm (6) reads:

fDMD(x(t)) =
m∑
i=1

biΨie
(ωit) ≈ VDMDdiag(e

ωDMDt)b, (4.22)

where b = (VDMD)
†f(x(t0)) ∈ RmD Now using this approximation in (3.10) we

obtain the NLMM-DMD reduced model given as:

ẋr(t) = VNLMM
TVDMDdiag(e

ωDMDt)b+VNLMM
TBu(t),

yr(t) = g(VNLMMxr(t)),
(4.23)

where (VNLMM)
TVDMD ∈ Rr×mD and diag(eωDMDt) ∈ RmD .

As we can see that the size of this new ROM (4.23) is independent of the
full model as in the case of DEIM. Note that the nonlinear snapshots required
for initializing DMD are needed only once. After the DMD approximation (4.22)
is obtained, no further evaluation of the nonlinear term is required in the online
stage yielding a significant speedup in the evaluation of the reduced model. This
is also verified by the flop count requirements of the NLMM-DMD procedure as
compared to POD-DEIM as presented in Table (4.7).

Table 4.7: Comparison of the computational complexity between POD-DEIM and
NLMM-DMD

Procedure Complexity

FULL O(2n2 + n)
POD-DEIM O(2r2 + 4mdr + r)
NLMM-DMD O(2r2 + r)

Furthermore note that the efficiency of DEIM is related to nonlinear term
f and the DEIM approximation (cf 3.46) may not always hold, especially when
the nonlinear components are not linearly independent. As we will show next,
NLMM coupled with DMD gives an added computational savings than POD-
DEIM while being a complete non-intrusive MOR approach. The overall scheme
can be summed up in Algorithm (7).
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Algorithm 7 NLMM-DMD

Input: FOM ẋ(t), Signal Generator ζ̇(t), r number of NLMM modes and mD

number of DMD modes.

1: Compute VNLMM following Algorithm (4) ▷ orthogonal basis (NLMM)
2: Obtain function snapshots {f(x(t0)), ..., f(x(tk))}
3: Set X1 = [f(x(t0)), f(x(t1)), .., f(x(tk−1))]

4: Set X2 = [f(x(t1)), ..., f(x(tk))]

5: Compute DMD modes from Algorithm (6) ▷ call DMD
6: Integrate (4.23)

7: Project back full solution

4.3.3 Case studies

To present the numerical validation of NLMM-DMD framework, we use two bench-
mark problems: Chafee-Infante equation and the nonlinear circuit example.

Chaffee-Infante model

First, we consider the one-dimensional Chafee-Infante also known as Allen-Cahn
equation. This model has a cubic nonlinearity and models the reaction-diffusion
in a variety of applications like chemical processes [87], fluid dynamics [74], and
biological sciences [255]. The governing PDE is given as:

∂ϑ

∂t
(x, t) =

∂2ϑ

∂x2
(x, t)− λ(ϑ3(x, t)− ϑ(x, t)), (4.24)

with initial condition and boundary conditions as:

ϑ(x, 0) = 1− sin(πx/L), x ∈ (0, L),

ϑ(0, t) = u(t),
∂ϑ

∂x
(L, t) = 0, t ∈ (0, T ),

where λ being the diffusion coefficient, adjusts the relative balance between the
diffusion term and the nonlinear term. For our evaluations, we used λ = 1 and
length of the spatial domain L = 1. A finite difference method with l grid points
yielded a system of form f(x,u) = Ax+ f(x+bu), (E = I) of dimension n = l. A
single control input u(t) was applied on the left boundary x = 0, and the output
of interest was measured on the right boundary x = L. The various parameters of
FOM, NLMM, DMD, POD, and DEIM used for this model are enlisted in Table
4.8.
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Table 4.8: Chafee-Infante model: Parameters used

Method Parameters

Full model n = 1000, L = 1, λ = 1, t ∈ [0, 2s]

NLMM r = 10, ζ̇(t) = 0.5 sin(πt), i = 1, K = 61, tk ∈ [0, 10s]
DMD mD = 10, k = 200
POD r = 10, ns = 200
DEIM md = 10, ns = 200
Test Input u(t) = 0.5(cos(2πt) + 1)

First, we constructed the POD-DEIM approximation for the sake of compari-
son. For that, the POD basis was obtained using 200 snapshots of the FD model
of the Chafee-Infante PDE (4.24). Then, hyper-reduction using DEIM was carried
withmd = 10 interpolation indices via Algorithm 3. To obtain the projection basis
via NLMM, a single signal generator ζ̇(t) was solved and used in the offline stage
using Algorithm 4. For online evaluation, the DMD method was used (Algorithm
6) with 200 snapshots of the nonlinear term, that were already available from the
DEIM. Note that for the NLMM-DMD framework, different inputs were used for
training and testing (as explained earlier), whereas, for POD-DEIM, the training
and test inputs were kept the same.

Figure 4.4: Chafee-Infante: Solution (left) full order (middle) POD-DEIM ROM
(right) NLMM-DMD ROM

Figure 4.5: Chafee-Infante: Comparison of (left) output response, (middle) point-
wise realtive error, (right) CPU times
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Table 4.9: Chafee-Infante: Numerical results

Method offline time (s) online time (s) L1 L2 L∞

FOM - 103.04 -
POD-DEIM 103.09 (200 NLSE) 1.66 1.67e−9 3.7e−7 6.3e−9

NLMM-DMD 44.70 (61 NLSE) 0.23 2.23e−4 3.1e−6 3.3e−8

The numerical results are presented in Figs. 4.4 and 4.5. Moreover, the ap-
proximation errors and the CPU times are enlisted in Table 4.9. From the result,
we can observe that POD-DEIM yields good approximation than NLMM-DMD.
However, the latter yields a significant speed-up both in offline as well as online
simulation times. Moreover, as seen from Fig. 4.5, the simulation time of DMD is
always lesser as compared to DEIM for varying approximation ranks of the non-
linear function. This trend is expected since DMD avoids evaluating the nonlinear
terms in the online stage, wheres DEIM requires the solution of reduced nonlinear
inner products.

Nonlinear transmission-line model

Finally, we consider the nonlinear transmission line network model. This model is
used extensively in MOR literature [249, 250, 20, 54], and has become a benchmark
problem in MOR. The model includes a chain of resistors and capacitors (cf. Fig.
4.6). A quadratic nonlinearity is introduced at each node by adding nonlinear
resistors to the ground given as: in(x) = p.sgn(x)x2 where sgn(x) = 1 if x > 0
and sgn(x) = −1 if x < 0. As such, the nonlinear function f becomes:

f(x) = Ax− n(x),

where

A =


−2 1
1 −2 1

. . . . . . 1
1 −2

 , n(x) =


sgn(x1)x

2
1

sgn(x2)x
2
2

...
sgn(xn)x

2
n

 ,

where n is the number of nodes in the circuit. For simplicity, we assume that
p = C = R = 1. The input to the system is a current source which excites the
system, and the output is taken at the first node. The various parameters of the
model and reduction are mentioned in Table 4.10).
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Figure 4.6: Nonlinear transmission line model

Table 4.10: Nonlinear Transmission Line: Parameters used

Method Parameters

Full model n = 1500, R = C = p = 1, t ∈ [0, 20s]

NLMM r = 25, ζ̇(t) = 300 cos(300t), i = 1, K = 101, tk ∈ [0, 10s]
DMD mD = 25
POD r = 10, ns = 300
DEIM md = 25
Test Input u(t) = 15e−t

Figure 4.7: Nonlinear Transmission Line: (left) output response, (middle) CPU
time (right) relative L2 norm error

For the application of NLMM, the signal generator used is given as ζ̇(t) =
300 cos(300t) with K = 101 time-snapshots. Simulation results are depicted in
Fig. 4.7. As expected, the CPU time of NLMM-DMD is less than POD-DEIM.
Since the meaning of rank for DMD and DEIM is different, we also show the error
by varying the rankmd andmD for a fixed number of POD/NLMM basis functions
in Fig. (4.7). We observe that NLMM-DMD always has a monotone decay as we
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increase the DMD rank. Finally, Table 4.11 summarizes the comparison of the
offline time, online time, and the various error norms for the RC-ladder network.
In this case, the application of NLMM-DMD produced around 14 fold reduction
in offline time and ≈ 3 fold reduction in online computation time. Thus, a total
of 91% savings in overall CPU time was achieved.

Table 4.11: Nonlinear Transmission Line: Numerical results

Method offline time (s) online time (s) L1 L2 L∞

FOM - 293.21 -
POD-DEIM 295.68 (300 NLSE) 11.57 2.2e−5 7e−7 3.3e−8

NLMM-DMD 21.44 (101 NLSE) 3.5 2.7e−4 6e−7 2.9e−6

4.4 Chapter Summary

This chapter discussed two numerical frameworks for the efficient reduction of non-
linear state-space models based on nonlinear moment-matching; NLMM-DEIM
and NLMM-DMD. While the former presents a robust MOR approach for ob-
taining compact ROMs with high accuracy, the latter offers added computational
savings in a non-intrusive setup. We presented several numerical simulations to
test both the schemes, and the results thus obtained are in compliance with the
theoretical observations. In the next chapter, we will extend the application of
NLMM for nonlinear models in second-order form.



Chapter 5

Second-Order State-Space Systems

While modeling electrical or mechanical systems, one has to deal with models in
second-order form. These include models emerging from structural dynamics, vi-
broacoustics, MEMS, electrical power systems, and circuits. Furthermore, these
models often exhibit material nonlinearities, geometrical nonlinearities (e.g., large
deformations), nonlinear boundary conditions, etc. A common approach of reduc-
ing such systems is to first transform the second-order structure to the first order
and then proceed with the general reduction. However, this results in the loss of
the physical meanings of the state variables. Thus, MOR methods that aim to
construct reduced models that preserve the second-order structure are strongly
aimed [37, 190, 191, 256, 284].

In this chapter, we will focus on reducing a general class of nonlinear second-
order state-space models. We will first revisit the reduction for second-order linear
systems via moment-matching and the associated approaches. Then, we will dis-
cuss the problem in nonlinear settings whereby we will propose another reduction
framework based on the second-order NLMM with DEIM (SONLMM-DEIM).
Finally, we will discuss the applicability of this framework on some nonlinear,
second-order power-system models.

5.1 Moment-matching in linear second-order systems

To define the generalized notion of moments, consider a large-scale, MIMO, linear,
second-order state-space model given as:

Mẍ(t) +Dẋ(t) +Kx(t) = Bu(t),

y(t) = Cx(t),
(5.1)

where the matrices M,D,K ∈ Rn×n represent the mass, damping and stiffness
matrices respectively. Vector x(t) ∈ Rn represents the displacement vector with
x(0) = x0, ẋ(0) = ẋ0, and ẍ(0) = ẍ0. Since the mass, stiffness, and damping

75
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matrices in most of the practical systems are symmetric and positive definite, it
is often recommended to represent the system (5.1) as a transformed state-space
model given as follows:[

−K 0
0 M

]
︸ ︷︷ ︸

E

[
ẋ(t)
ẍ(t)

]
︸ ︷︷ ︸

ẋ

=

[
0 −K
−K −D

]
︸ ︷︷ ︸

A

[
x(t)
ẋ(t)

]
︸ ︷︷ ︸

x

+

[
0
B

]
︸︷︷︸

B

u(t), (5.2a)

y(t) =
[

C 0
]

︸ ︷︷ ︸
C

[
x(t)
ẋ(t)

]
︸ ︷︷ ︸

x

. (5.2b)

As a result, the symmetry and definiteness of matrix E is taken care of by matrices
M and K, and the symmetry of matrix A is maintained by matrices K and D
respectively.

Definition 5.1 (0-th moment of second-order system) The i-th moment of
system (5.1) around expansion point s = 0 is defined as:

η0
i =

[
0 −CK−1

] [ 0 −MK−1

I −DK−1

]i [
0
B

]
. (5.3)

▲

It is hereby assumed that the matrix K is invertible to ensure that the matrix A
remains nonsingular.

Definition 5.2 (Markov parameter of second-order system) The Markov pa-
rameter of system (5.1) is defined as:

Mi =
[

0 CM−1
] [ −DM−1 I

−KM−1 0

]i [
B
0

]
, (5.4)

with the condition that matrix M is invertible. ▲

Definition 5.3 (Second-Order Krylov subspace) [257] Given two matrices
X1 and X2 ∈ Rn×n and another matrix H1 ∈ Rn×m whose columns represent the
starting vectors, the second-order Krylov subspace is defined as:

Kr(X1,X2,H1) = colspan{Q0,Q1, ...,Qr−1}, (5.5)

where{
Q0 = H1, Q1 = X1Q0

Qi = X1Qi−1 +X2Qi−2, i = 2, 3, ..
(5.6)

▲
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Now, depending upon the type of damping involved, we distinguish between the
following second-order input and output Krylov subspaces.

Definition 5.4 (Second-order input and output Krylov subspace)

• For zero or proportional damping, the columns of V and W are chosen as
the basis of the following Krylov subspaces given as:

Kr(K
−1
σ M,K−1

σ B) ⊂ colspan(V), (5.7a)

Kr(K
−T
σ MT,K−T

σ CT) ⊂ colspan(W). (5.7b)

• For a general damping (D ̸= 0), the columns of V and W form a basis of
the following second-order Krylov subspaces

Kr(K
−1
σ Dσ,K

−1
σ M,K−1

σ B) ⊂ colspan(V), (5.8a)

Kr(K
−T
σ DT

σ ,K
−T
σ MT,K−T

σ CT) ⊂ colspan(W), (5.8b)

where Kσ = K+ σD+ σ2M and Dσ = D+ 2σM ▲

Similar to first-order systems, the reduction techniques employing only one second-
order Krylov subspace are known as the one-sided Krylov subspace method, and
the reduction techniques involving both the second-order Krylov subspaces are
known as the two-sided Krylov subspace methods.

Now consider the approximation ansatz given as x(t) = Vxr(t),V ∈ Rn×r.
Substituting this approximation in (5.1) and pre-multiplying byWT ∈ Rn×r yields
a second-order reduced model of dimension r given as:

Mrẍr(t) +Drẋr(t) +Krxr(t) = Bru(t),

yr(t) = Crxr(t),
(5.9)

where

Mr = WTMV, Dr = WTDV,Kr = WTKV,Br = WTB,Cr = CV. (5.10)

Using the formulation in (5.2), the second-order reduced model (5.9) is expressed
in a transformed state-space given as:

[
−WTKV 0

0 WTMV

]
︸ ︷︷ ︸

Er

[
ẋr(t)

ẍr(t)

]
︸ ︷︷ ︸

ẋr

=

[
0 −WTKV

−WTKV −WTDV

]
︸ ︷︷ ︸

Ar

[
xr(t)

ẋr(t)

]
︸ ︷︷ ︸

xr

+

[
0

WTB

]
︸ ︷︷ ︸

Br

u(t),

yr(t) =
[

CV 0
]

︸ ︷︷ ︸
Cr

[
xr(t)

ẋr(t)

]
︸ ︷︷ ︸

xr

,

(5.11)
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where the projection matrices are defined as:

Ṽ =

[
V 0
0 V

]
, W̃ =

[
W 0
0 W

]
. (5.12)

This formulation preserves the structure of the original model. To obtain the
projection basis to match any desired moments, all the previously mentioned the-
orems in Chapter 2 can be generalized for the second-order system in a similar
fashion.

Theorem 5.1 (Moment-matching in linear second-order systems) [257] In
order to match the first r1 + r2 moments between the original second-order model
(5.1) and the reduced second-order model (5.9), it is required that the columns
of projection matrices V and W used in (5.10) form the basis for the input and
output second-order Krylov subspaces (5.8a) and (5.8b) respectively. Also, it is
assumed that the matrices K and Kr are invertible. ▲

Similarly the rational interpolation can achieved as follows:

Theorem 5.2 (Rational interpolation in second-order systems) [257, 256]
In order to match first ri moments about σi, i = 1, .., k2 of the original and reduced
models, it is assumed that matrices V and W, used in (5.10), are chosen as fol-
lows:

span(V) =

k1⋃
i=1

Kri(−(K+ siD+ s2iM)−1(D+ 2siM),

− (K+ siD+ s2iM)−1M,−(K+ siD+ s2iM)−1B),

and

span(W) =

k2⋃
i=k1+1

Kri(−(K+ siD+ s2iM)−T (D+ 2siM)T ,

− (K+ siD+ s2iM)−TMT ,−(K+ siD+ s2iM)−TCT ).

▲

The first successful attempt in reducing second-order models came from Meyer and
Srinivasan [206] which involved the evaluation of the free-velocity and the zero-
velocity gramians. This was later followed by the much improved second-order
balancing truncation method by Chahlaoui et al. [75]. However, balancing for
second-order systems is not recommended from a numerical perspective. Instead,
faster iterative schemes based on Arnoldi or Lanczos are more suitable for reducing
systems in the second-order structure. An early attempt in this direction came
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from Su, and Craig [284] and later by Bastian and Haase [37] in which Krylov sub-
space methods were employed. However, these methods could not match nonzero
moments, and the number of moments matched was less than the classical Krylov
subspace methods. Consequently, several papers appeared based on similar ideas
[120, 185]. These methods obtained reduced models by applying different projec-
tion mappings to an equivalent state-space model while preserving its structure.
Behnam et al. [256] proposed two different techniques for reducing second-order
system by first reducing an equivalent state-space model followed by back conver-
sion of the reduced model to second-order form. This resulted in matching double
the number of moments than the second-order Krylov methods proposed in Refs.
[257, 191, 35].

5.2 Nonlinear second-order systems

Now, we consider a nonlinear second-order state-space model given as:

Mẍ(t) +Dẋ(t) + f(x(t)) = Bu(t),

y(t) = Cx(t),
(5.13)

where M ∈ Rn×n is a non-singular mass matrix, D ∈ Rn×n represents the damping
term. For nonlinear systems, a linear Rayleigh damping (D = αM + βK(xeq))
or zero damping (D = 0) is mostly considered. f(x) : Rn → Rn is the nonlinear
smooth mapping. For the equilibrium point xeq to be exponentially stable, it is
hereby assumed that the mass matrix is symmetric positive definite, i.e., M =
MT ≻ 0.

5.2.1 Linear Galerkin projection

The most straight forward approach to reduce nonlinear second-order systems is to
employ a linear Petrov-Galerkin projection. Substituting the linear approximation
ansatz (cf. 2.34) in FOM (5.1), and premultiplying the overdetermined system
with the projector P = V(VTV)−1VT gives:

P
(
MVẍr(t) +DVẋr(t) + f(Vxr(t))−Bu(t)− r(t)

)
= 0. (5.14)

And enforcing the Petro-Galerkin condition vanishes the residual and yields the
desired ROM:

Mrẍr(t) +Drẋr(t) +VT f(Vxr(t)) = Bru(t),

yr(t) = Crxr(t),
(5.15)
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where {Mr,Dr} = WT{M,D}V,Br = WTB,Cr = CV with W = V, and
{xr(0), ẋr(0)} = (WTV)−1WT{x0, ẋ0}.

5.2.2 Nonlinear Galerkin projection

Another possibility of obtaining a reduced second-order model is by applying a
nonlinear Petrov-Galerkin projection (cf. 3.2) given as:

x(t) = ℘(xr(t)) + e(t), (5.16)

where the first and second derivative yields:

ẋ(t) =
∂℘(xr(t))

∂xr(t)︸ ︷︷ ︸
Ṽxr

ẋr(t) + ė(t), (5.17a)

ẍ(t) =
∂℘(xr(t))

∂xr(t)︸ ︷︷ ︸
Ṽxr

ẍr(t) +
∂2℘(xr(t))

∂x2
r(t)︸ ︷︷ ︸

dṼxr

(ẋr(t)⊗ ẋr(t)) + ë(t), (5.17b)

and where the matrices

Ṽxr =
∂℘(xr(t))

∂xr(t)
∈ Rn×r, dṼxr =

∂2℘(xr(t))

∂x2
r(t)

∈ Rn×r2 (5.18)

are the Jacobian and Hessian matrices respectively. Substituting the the approx-
imation ansatz (5.16) and its derivatives (5.17b) and (5.17b) yields an overdeter-
mined system of equations with residual r(t) ∈ Rn. The resulting system is then
projected onto an orthogonal tangent space V⊥ = ran(Ṽxr) using the projector
P̃ = Ṽxr(Ṽ

T
xr
Ṽxr)

−1ṼT
xr

which yields

P̃
(
MṼxr ẍr +MdṼxr(ẋr ⊗ ẋr) +DṼxr ẋr + f(℘(xr))−Bu(t)− r(t)

)
= 0

(5.19)

Finally enforcing the Galerkin condition ṼT
xr
r(t) = 0 yields the projected ROM:

M̃rẍr(t) + p̃r(t) + D̃rẋr(t) +VT f(℘(xr(t))) = B̃ru(t),

yr(t) = C℘(xr(t)),
(5.20)

where {M̃r, D̃r} = ṼT
xr
{M,D}Ṽxr , p̃r(t) = ṼT

xr
MdṼxr(ẋr⊗ẋr), and B̃ = ṼT

xr
B.
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5.2.3 Moment-matching in nonlinear second-order systems

Consider a nonlinear, second-order exogenous system/ signal-generator as follows:

ζ̇(t) = ϖ(ζ(t)),

ζ̈(t) =
∂ϖ(ζ(t)))

∂ζ(t)
.ϖ(ζ(t)),

u(t) = ϱ(ζ(t)),

(5.21)

with smooth mappings ϖ(ζ(t)) : Rr → Rr and ϱ(ζ(t)) : Rr → Rm. It is assumed
that the the nonlinear signal generator 5.21 is neutrally stable and observable.

Theorem 5.3 (Nonlinear moment-matching for second-order systems) [26]
With the assumption that the nonlinear second-order signal generator (5.21) is
neutrally-stable, the nonlinear second-order ROM (5.20) matches the (well-defined)
steady-state of FOM (5.13) when both are excited by the inputs from (5.21). The
projection mapping ℘(ζ(t)) used to obtain the ROM uniquely solves the second-
order Sylvester PDE given as:

M
∂℘(ζ)

∂ζ

∂ϖ(ζ)

∂ζ
ϖ(ζ) +M

∂2℘(ζ)

∂ζ2 (ϖ(ζ)⊗ϖ(ζ))+

D
∂℘(ζ)

∂ζ
ϖ(ζ) + f(℘(ζ)) = Bϱ(ζ).

(5.22)

▲

The steady-state response is related to the 0th nonlinear moments at (ϖ(ζ(t)),ϱ(ζ(t))),
and is given as:

yss = η0(ϖ(ζ(t)),ϱ(ζ(t))). (5.23)

Remark 5.1 (Interpretation as steady-state matching) Interconnecting the
second-order signal generator (5.21) with the FOM (5.13) and ROM (5.20) can
be interpreted as exact matching of the steady-state of the FOM (5.13) and ROM
(5.20) (cf. Fig. 5.1), i.e.,

yss(t) = η0(ϖ(ζ(t)),ϱ(ζ(t))) = ηr0(ϖ(ζ(t)),ϱ(ζ(t))) = yr,ss(t) (5.24)

5.3 Approximated second-order nonlinear moment-
matching

The solution of second-order nonlineatr Sylvester PDE (5.22) is expensive to solve
for ϖ(ζ(t)) as it involves solving a PDE in second-order structure. As such,
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we take some simplifications from Maria et al. [295] to arrive at a practical,
simulation-free algorithm. These simplifications are much similar to what was
used for the first-order Sylvester PDE as discussed in Section 4.1.1. Here, we only
discuss the a general case of a nonlinear signal generator.

Cr℘r(ζ(t))C℘(ζ(t))

SO-FOM SO-ROM

Nonlinear Second-order Signal Generator

ζ̇(t) = ϖ(ζ(t)),

ζ̈(t) = ∂ ϖ(ζ(t))
∂ζ(t) .(ϖ(ζ(t)),

u(t) = ϱ(ζ(t))

Mẍ(t) +Dẋ(t) + f(x(t)) = Bu(t),
y(t) = Cx(t),

M̃rẍr(t) + p̃r(t) + D̃rẋr(t)

+VT f(℘(xr(t))) = B̃ru(t)
yr(t) = C℘(xr(t))

M∂℘(ζ)
∂ζ

∂ϖ(ζ)
∂ζ ϖ(ζ) +M∂2℘(ζ)

∂ζ2 (ϖ(ζ)⊗ϖ(ζ))

+D∂℘(ζ)
∂ζ ϖ(ζ) + f(℘(ζ)) = Bϱ(ζ)

M̃r
∂℘r(ζ)

∂ζ
∂ϖ(ζ)
∂ζ ϖ(ζ) + M̃r

∂2℘r(ζ)

∂ζ2 (ϖ(ζ)⊗ϖ(ζ))

+̃Dr
∂℘r(ζ)

∂ζ ϖ(ζ) + f(℘r(ζ)) = B̃rϱ(ζ)

Moments Moments
=

Figure 5.1: Time-domain illustration of nonlinear second-order moment-matching
in terms of steady-state response matching between SO-FOM and SO-ROM

1) Linear projection
Using a linear projection x(t) = Vζ(t), the second-order Sylvester PDE
(5.22) becomes:

MV
∂ϖ(ζ(t))

∂ζ(t)
ϖ(ζ(t))+DVϖ(ζ(t))+ f(Vζ(t))−Bϱ(ζ(t)) = 0. (5.25)

Note that the application of linear projection vanishes the term correspond-
ing to second-order partial derivative of ϖ(ζ(t)).
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2) Column-wise consideration
System (5.25) is then considered column-wise for each vi i = 1, .., r, to avoid
the underdetermined problem of n equations for n.r unknowns in V ∈ Rn×r

which yields

Mvi
∂ϖi(ζi(t))

∂ζi(t)
ϖi(ζi(t)) +Dviϖi(ζi(t)) + f(viζi(t))−Bϱi(ζi(t)) = 0.

(5.26)

3) Time discretization
Finally, (5.26) is solved for time-discrete samples tk, k = 1, .., K yielding:

Mvik
∂ϖik(ζik(tk))

∂ζik(tk)
ϖik(ζik(tk)) +Dvikϖik(ζik(tk)) + f(vikζik(tk))

−Bϱik(ζik(tk)) = 0.

(5.27)

Note that prior to solving (5.27), the discrete solution of ζik(tk) of the non-
linear second-order signal generator (5.21) should be computed.

Thus, these simplifications result in the following second-order nonlinear moment-
matching algorithm:

Algorithm 8 Second-Order Nonlinear Moment Matching (SONLMM)

INPUT: M,D,B, f(x,u),K(x,u), ζi(tk), ζ̇i(tk), ζ̈i(tk),ϱi(ζi(tk)), initial guess
v0,ik, reduced rank order r
OUTPUT: Orthogonal basis: V

1: for i = 1 : r do

2: for k = 1 : K do

3: fun = @(v) Mvζ̈i(tk) +Dvζ̇i(tk) + f(vζi(tk))−Bϱi(ζi(tk)) ▷residual

4: Jfun = @(v)Mζ̈i(tk)+Dζ̇i(tk)+K(vζi(tk))ζi(tk) ▷ Jacobian of residual
5: vik = NewtonRaphson(fun,v0,ik, Jfun)

6: V(:, (i− 1) ∗K + k)← vik

7: V = GramSchmidt(vik,V) ▷ optional
8: end for
9: end for
10: [U, Σ, ˜] = SVD(V); V = U(:, 1 : r) ▷ optional

5.4 SONLMM-DEIM

Now we are ready to introduce another efficient MOR strategy to treat nonlin-
ear systems in the second-order form. The method is called SONLMM-DEIM.
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The motivation of using DEIM with SONLMM stems from the fact that the com-
plexity in solving reduced nonlinear function f() in ROMs (5.15) and (5.20) still
depends on the original model dimension n, which is expensive. Thus, employ-
ing a hyper-reduction-based scheme such as DEIM can reduce the complexity of
solving nonlinear inner products to a cost proportional to the number of reduced
variables. Using the DEIM approximation of the nonlinear function f() the ROM
(5.15) becomes:

Mrẍr(t) +Drẋr(t) + βDEIMf(γDEIMxr(t)) = Bru(t),

yr(t) = Crxr(t),
(5.28)

where the terms βDEIM = WTUd(P
TUd)

−1 ∈ Rr×md and γDEIM = PTV ∈ Rmd×r

are both independent of n and hence can be precomputed. The algorithm is given
as follows:

Algorithm 9 SONLMM-DEIM

Input: M,D,B, f(x,u),K(x,u), ζi(tk), ζ̇i(tk), ζ̈i(tk),ϱi(ζi(tk)), initial guess
v0,ik, reduced rank order r, and md number of DEIM modes.

1: Compute V following Algorithm 8 ▷ orthogonal basis via SONLMM
2: Obtain function snapshots F = [f(x(t1)) f(x(t2))... f(x(tns))]

3: Calculate [ul, Σd, ˜] = SVD(F)
4: Obtain Ud,P and p⃗ from Algorithm 3 ▷ DEIM basis

5: Construct the reduced model (5.28) with the reduced nonlinear function ob-
tained from (3.47)

6: Integrate (5.28)

7: Project back full solution

Since the discussion regarding the computational aspects also applies here, we
refrain from the further details and instead refer the reader to Section 4.1.2. In
the following, we will discuss the MOR applications in power systems which are
primarily second-order in nature. We will first show a general reduction approach
by converting the second-order structure of the power system models to a first-
order. Afterward, we will demonstrate the use of SONLMM-DEIM to obtain a
structure-preserving ROM.

5.5 Reduction of Power System models

Due to the precise nature of the electrical power grids spanning a wide geographical
area, their mathematical models may easily have dimensions of several thousand
degrees of freedom. Several applications like security assessment, dynamic simu-
lation, online system identification, trajectory sensitivity analysis, and control of
power systems require repeated simulations with higher precision [287]. As such,
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these large-scale models pose an onerous challenge in terms of computational re-
sources, e.g., core hours. In power system parlance, the model reduction problem
is also known as the problem of dynamic equivalencing [86]. Most often, power
systems are divided into a study area, which contains the variables of interest, and
an external area making up the rest of the power system. The study area is mod-
eled in full detail and is precisely analyzed and controlled, while the external area,
being a less faithful representation, is usually reduced to a linear system without
affecting the behavior of the study area [78]. Based on the physical properties of
power systems, coherency-based MOR methods were initially proposed, see, e.g.,
[290, 128, 289]. These methods first aim to identify a coherent group of genera-
tors, i.e., machines with a similar behavior when the same input is applied. Then,
the dynamic reduction is performed by replacing such machines with aggregate
generators and networks. However, the performance of these methods is limited
to the identification of coherent generators. Besides the coherency based methods,
techniques based on synchrony [244, 211], singular perturbation [307], modal anal-
ysis [199, 198] have been proposed. In the past years, there has been an interest
in the power system community to develop reduction techniques that are based
on mathematical properties of power systems instead of physical ones, see, e.g.,
[210, 205, 68]. One of the main reasons for this shift is the possibility of reducing
networks with renewable sources. These reduction techniques include the classical
Krylov subspace reduction [78, 262], balanced truncation [245] and extended bal-
anced truncation [280] have successfully been implemented. Moreover, methods
such as measurement-based reduction [77, 302], ANN-based boundary matching
technique [194], heuristic optimization based approach [73], independent compo-
nent analysis approach [21] have also been reported. Since most of the available
MOR techniques for power systems rely on linearizing the external area, these
methods cannot always provide an accurate description of the full model, which
is intrinsically nonlinear. Towards this direction, nonlinear MOR techniques for
power systems have been recently proposed, see. e.g., [313, 196, 222, 235]. This
is also complemented with MOR schemes that preserve certain system param-
eters as well[1, 262]. However, most of the nonlinear MOR methods either in-
volve expensive measurements of large-scale snapshot ensemble in the presence of
some excitation input signal or the solution of Lyanupov equations, which are also
computationally demanding. The problem is further compounded when repeated
simulations are required for different input signals or in parametric systems.

5.5.1 Dynamical Power Grid models

The most critical stability concern for the normal operation of a power system is
the synchronization of its oscillators, which may be generators or loads, in terms
of their frequencies. The following equation of motion describes the rotational
dynamics of i-th alternator a power system with n oscillators:

2Hi

ωR

d2δi

dt2
+Di

dδi

dt
= Fi + fi(δ), ∀i = 1, 2, .., n (5.29)
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where Hi,Di ∈ Rn×n are the diagonal matrices containing normalized inertia con-
stant and damping factors, ωR is the reference frequency, δi ∈ Rn represent the
rotor angles which are the states of the nonlinear system, and n is the number of
generators of the system. Fi is a constant term representing the input mechan-
ical power while fi(δ) is the nonlinear coupling term representing the demanded
electrical power of i-th generator described as:

fi(δ) = −
n∑

j=1;j ̸=i

Kij sin(δi − δj − γij). (5.30)

The constant terms of Kij, γij, and Fi depend on the solution of power flow equa-
tions. It is hereby assumed that under equilibrium, Fi = fi(δ). Whenever there is
any variation between the two, their difference is compensated by either decreas-
ing or increasing the rotor’s angular momentum, which results in the transient
phenomenon. Thus, the transient behavior of the power grid network is given
by the solution of (5.29) under the assumption that all nodes are considered as
PV nodes. However, this condition is relaxed for a general setup containing both
generator and load buses resulting in the following generalized form:

αi(
2Hi

ωR

d2δi

dt2
+Di

dδi

dt
− Fi) + (1 + αi)p

k
i

= −
n∑

j=1;j ̸=i

Kij sin(δi − δj − γij),
(5.31)

where

αi =

{
1 : Generator bus

0 : elsewhere

and pki is power consumed at ith node. Thus, the overall dynamics is governed
by (5.31), which is an n-dimensional system of second-order differential equations
corresponding to generator buses, and algebraic equations associated with load
buses.

Although the swing equation for a single oscillator is simple, modeling a re-
alistic power system is challenging due to the large-scale structure of a typical
power network that may even span multiple countries. Furthermore, modeling
of loads requires the incorporation of their dynamical behavior at different nodes
in the network. To address these problems, different modeling techniques have
been proposed. Effective network (EN) and synchronous motor (SM) models are
of particular interest as they are most commonly used [218]. Both of these are
described by (5.29), albeit with different approaches to the interpretation of Fi,
Kij, and γij. The EN model is a network-reduced model in which the number of
nodes is reduced from n to ng, where ng represents the number of generators, and
the network parameters are described as follows:

Fi = Pgi − |E|2Gij, Kij =
∣∣EiEjYij

∣∣ , γij = λij −
π

2
, (5.32)
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where Pgi is the steady-state electrical power output of ith generator. Yij is the
corresponding element of the admittance matrix between the generator terminal
nodes obtained by eliminating the load nodes through Kron reduction, Gij is
its real part and λij is its argument. The admittance network may not have a
complete graph topology due to the reduction. E is the voltage at the internal
node of the generator behind the transient reactance.

The SM model, on the other hand, represents each load as a synchronous motor
or as a generator with negative mechanical power. Thus, the admittance network
has the topology of a complete graph as all generators and motors (loads) are
accounted for. The parameters are defined by the same equation (5.32) of the EN
model, although with a different meaning of the symbols. The internal voltage
Ei is determined for all generators and motors, so is Fi. The SM model has been
used to study the network topology of the European power grids and minimum
coupling strength required for synchronization [192].

Next, we consider both the EN and SM models after transformation to first-
order systems as follows:

δ̇i = ωi, (5.33a)

ωi = −
Di

2Hi

ωi +
ωR

2Hi

Fi +
ωR

2Hi

fi(δ), (5.33b)

where ωi is the frequency at ith node. We used the IEEE 118 and IEEE 300
bus systems as our test models. All the parameters of the IEEE 118 and 300 bus
system models were generated using MATLAB toolbox MATPOWER 6.0 [315],
and pg sync models [218]1. The number of oscillators and size of original and
reduced models along-with the CPU times for the two bus models are enlisted in
Table 5.1

Table 5.1: Different parameters of original and reduced models for the two IEEE
bus systems

Bus system Config.
No. of

oscillators
FOM Size

& CPU time
ROM Size

& CPU time

IEEE-118
EN 54 108 (24.3s) 20 (12.53s)
SM 118 236 (52.8s) 20 (20.98s)

IEEE-300
EN 69 138 (37.56s) 25 (17.38s)
SM 300 600 (995.5s) 25 (280.2s)

The reduction of (5.33 was performed using NLMM-DMD described in Sec. 4.3.
NLMM was used via Algorithm 4 by selecting the training signal thorough a single

1The MATLAB script to reproduce the results are available at https://zenodo.org/record/
4954937#.YMh0OzaA79E

https://zenodo.org/record/4954937#.YMh0OzaA79E
https://zenodo.org/record/4954937#.YMh0OzaA79E
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signal generator selected as ζ̇(t) = 5 sin(2πt) with K = 40 and tk ∈ [0 20]. This
choice of the signal generator was expected to capture both the transient and
steady-state behavior of the system. For the application of DMD, Algorithm 6
was employed, and the nonlinearity was approximated with mD = 25 modes.

Figure 5.2: Top row: Output response for the full and reduced models of the IEEE
118 bus system (inset: error profile of NLMM-DMD ROM), Bottom row: Output
response for the full and reduced models of the IEEE 300 bus system (inset: error
profile of NLMM-DMD ROM)

Figure 5.3: Comparison of the simulation times between NLMM-DMD method
and POD-DEIM for two IEEE bus systems; (left) offline time (right) online time
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The output responses (average of rotor angle (δ)) of the original and NLMM-
DMD reduced models are presented in Fig. 5.2 along with point-wise error. It
is seen that the reduced model captures the dynamics of the original nonlinear
model with high accuracy. A quantitative comparison of NLMM-DMD framework
with POD-DEIM is depicted in Fig. 5.3. As expected, the offline CPU times of
NLMM are always less than POD for different sizes of ROMs. Similar is true for
the online evaluation of ROMs via DMD method over the DEIM.

To further test the validity of the reduced models, we considered a more prac-
tical scenario, i.e., we tested the performance of the ROMs for different fault
scenarios of the SM model of the IEEE 118 bus system (cf. Fig 5.4) which are
discussed as follows.

Figure 5.4: Single line diagram of IEEE 118 bus system

(i) Case I: A generator outage
In the first scenario, we simulated a generator outage connected at 89th bus
(cf. Fig. 5.4). The fault was induced at time t = 1s and the system was able
to recover after disturbances. The average velocities (large) of full-order and
reduced-order system are shown in Fig. 5.5 along with the error profile. It is
seen that the reduced model faithfully captures the transient as well as the
steady-state profile of the original response with a high approximation. A
comparison of the elapsed CPU times with POD-DEIM along-with L2 error
is presented in Table 5.2.
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Figure 5.5: First Scenario: Average angular velocities of the full-order and reduced
system of the IEEE 118 bus system. Inset: absolute error of the reduced model

(ii) Case-II: A self-clearing 3-phase fault at bus-II
Next, a 3-phase fault was induced at at bus-II of the IEEE 118 bus system
at t = 1s, and cleared at t = 2.5s, with a clearing time of 1500ms. Figure
5.6 shows the response of the large angular velocities of the faulty and the
neighboring buses. The high-fidelity solution is shown by solid lines and
the reduced solution by dashed lines; the absolute error is also shown as an
inset in the same figure. As confirmed by the small values of absolute errors
from Table 5.2, the two-time histories are indistinguishable from each other.
As expected, the CPU times of reduced model obtained via NLMM-DMD
method is much lower than POD-DEIM, as discussed earlier.

Figure 5.6: Second Scenario: Angular velocities of the buses I-III of the IEEE 118
bus system. Solid lines represent the full-models and dashed-lines represent the
reduced-models. Inset: absolute errors between the original and reduced models
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(iii) Case III: 3-phase fault followed with line tripping
Finally, a 3-phase fault was simulated at lines I and II of the IEEE-118 bus
system, occurring at t = 1s. Then, at t = 2.5s (after 1500ms), the fault was
manually cleared by isolating the faulty line from the rest of the system. This
depicts the most typical fault isolation method in power systems. Figure 5.7
demonstrates this scenario with the same color coding as the previous case.
We notice that after the fault is isolated, the system is able to recover and
this was very effectively captured by the reduced model.

Figure 5.7: Third Scenario: Angular velocities of the buses I-III of the IEEE 118
bus system. Solid lines represent the full-models and dashed-lines represent the
reduced-models. Inset: absolute errors between the original and reduced models

Table 5.2: Comparison of the CPU times and relative errors for different fault
scenarios in IEEE 118 bus system: n = 236, r = 20,md = mD = 30

method
offline
time (s)

online
time (s)

total CPU
time (s)

L2−norm
error

Fault
Case-I

FOM - - 59.37 -
POD-DEIM 59.37 15 74.37 5.7e−4

NLMM-DMD 11.20 4.27 15.47 2.3e−4

Fault
Case-II

FOM - - 52.02 -
POD-DEIM 52.02 8.51 60.53 5.7e−3

NLMM-DMD 16.62 3.20 19.82 1.3e−3

Fault
Case-III

FOM - - 69.96 -
POD-DEIM 69.9 13.01 82.91 5.6e−4

NLMM-DMD 6.15 4.51 10.65 7.7e−4
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Next, we will consider the direct reduction of second-order model (5.13) using
SONLMM-DEIM. This will preserve the second-order structure of the original
model resulting in a second-order ROM of the form (5.15).

5.5.2 Ring-Grid model

The numerical setup considered here represents a “Ring-Grid” network having
n-generators connected to an infinite bus (cf. Fig. 5.8). The governing dynamics
are represented by (5.29). The reference node (slack node) is connected to the
generators and is modeled as an infinite bus. It is assumed that both |E| and δ
are known apriori at the reference node. Furthermore, the following assumptions
are made for simplicity (as given in Ref. [196]):

1. The network is loss-less.

2. The length of the transmission line connecting all the generators to the
infinite bus is much larger than the lengths of lines between the individual
generators. This ensures the least interaction between the generators and
the infinite bus.

3. The length of transmission lines between the infinite bus and all the gener-
ators is the same.

4. The length of transmission lines between the generators is also the same.

Figure 5.8: Diagrammatic visualization of a Ring-Grid network with n -generators
(represented by green circles) connected to an infinite bus

Using the assumptions as above, the nonlinear term in (5.29) is modified as
follows:

fi(δ) = b1 sin(δi) + b2[sin(δi − δi+1) + sin(δi − δi−1)] i = 1, 2, ..., n (5.34)
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where b1 represents the line susceptance between the generators and slack node,
and b2 is the line susceptance between two connected generators. The various
model parameters used in the study are taken from [196] and are enlisted in Table
5.3.

Table 5.3: Ring Grid model: Parameters

Symbol Description Value

hi Mass of each alternator 1pu
di Damping of each alternator 0.25pu

Fi
Power generated by
each alternator

0.95pu

b1
Susceptance between alternator
and reference node

1pu

b2
Susceptance between connected
alternators

100pu

n Number of alternators 1000

Three different test cases were simulated by solving the FOM (5.29), and the cor-
responding reduced models were obtained using SONLMM-DEIM via Algorithm
9. The FOMs and ROMs were integrated using a fully implicit second-order Eu-
ler’s scheme 2 with a step size of δt = 0.01s. For comparison, POD ROM was
used as reference. The numerical results are presented in Fig. 5.9 and Table 5.4.
The three test cases are defined as follows:

(i) Case-I: All nodes starting from an under perturbation condition
For this scenario, all the nodes started from a non-equilibrium value δi = 0.8.
The reduced basis via SONLMM was obtained using Algorithm 9 with i =
1, k = 50. The training input was generated by the exogenous system /signal
generator ζ(t) = 10 sin(πt+ 50). For the application of DEIM, Algorithm 3
was used with mD = 10. It is observed that the SONLMM-DEIM ROM was
equally effective in approximating the original response like the POD with
less computational times.

(ii) Case-II: All nodes starting from an over perturbation condition
Next, we simulated the case where all the nodes start from a non-equilibrium
value of δ = 1.12, which corresponds to an over-perturbed scenario. It is
seen that POD requires a basis time more than that of FOM due to the
calculation of expensive snapshots matrix followed by SVD of a big matrix.

2The MATLAB implementation is available at https://zenodo.org/record/5055753#

.YN7-sOgzabg

https://zenodo.org/record/5055753#.YN7-sOgzabg
https://zenodo.org/record/5055753#.YN7-sOgzabg
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On the contrary, SONLMM-DEIM resulted in ≈ 96% reduction in offline
time and around 50% reduction in online time.

(iii) Case-III: All nodes starting from equilibrium condition
Finally, we considered the case where all the nodes start from the equilibrium
point of δi = 1. All the parameters regarding SO-NLMM and DEIM are
kept the same as the previous cases. Again, SONLMM-DEIM performed
better than POD in terms of computational time, however POD produced
a more accurate approximation of the FOM.

Figure 5.9: Left: Average of δ of the FOM and SONLMM-DEIM ROM for three
test case scenarios, Right: error profile of the ROMs for the three cases

Table 5.4: Ring Grid model: Comparison of ROMs for the three test cases

method size
CPU Time (s) error in δ

basis online total abs. rel.

Case-I
Full Model 1000 - - 103.43 - -
POD 15 109.98 33.37 143.36 4.32e−7 4.90e−9

SONLMM-DEIM 15 5.87 20.03 25.91 1.92e−5 1.43e−7

Case-II
Full Model 1000 - - 98.19 - -
POD 15 104.10 30.61 134.71 5.65e−7 3.92e−9

SONLMM-DEIM 15 3.92 15.23 19.15 8.01e−5 6.75e−7

Case-III
Full Model 1000 - - 98.54 - -
POD 15 104.16 32.01 136.18 3.51e−5 3.72e−9

SO-NLMM-DEIM 15 3.69 15.41 19.11 2.30e−5 1.80e−7
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5.6 Chapter Summary

In this chapter, we focused on the reduction of large-scale models in second-order
form. First, we discussed the reduction of linear second-order models via moment-
matching and the associated methods. Then, we described the notion of second-
order moments for nonlinear systems. We derived the second-order Sylvester equa-
tion and employed simplifications from [295] for approximated moment-matching.
Then, we discussed how DEIM could be used with SONLMM to obtain an efficient
framework for second-order models. Finally, we validated the theory on certain
power system models.

It can be concluded that SONLMM-DEIM is an efficient framework than POD.
However, the performance of SONLMM-DEIM depends on the choice of signal
generator employed. Thus, the signal generator chosen should excite the impor-
tant dynamics of the system under study or constitute the representative eigen
functions of the nonlinear system.

In the future, a more robust SONLMM can be derived where the choice of
the signal generator becomes less heuristic and more automatic. Furthermore, a
data-driven method such as DMD can be used instead of DEIM to reduce online
time in a non-intrusive setup.



Part III

Nonlinear Parametric State-Space
Systems
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Chapter 6

Parametric Nonlinear Model Order
Reduction

So far, in this thesis, we have discussed the reduction of large-scale nonlinear
systems via moment-matching without any parametric dependencies. However,
dynamical systems expressed as parameterized partial differential equations are
ubiquitous in all branches of engineering and applied sciences. While standard
MOR techniques are not robust to parametric variations, the process is exacer-
bated for large-scale problems with implicit parameter dependence. This part of
the thesis will focus on large-scale models with parametric dependencies. Starting
with this chapter, we lay the foundations of parametric model order reduction
(PMOR) techniques and discuss a novel framework to obtain parametric reduced-
order models (PROMs) that aim to preserve these parametric dependencies in the
reduced models. We will demonstrate the theory on some nonlinear benchmark
models, and towards the end of the chapter, we will provide some discussions and
future perspectives.

6.1 Overview of parametric MOR

Parametric MOR aims to characterize system response for a broad class of prob-
lems for which the equations representing the system dynamics depend on a set
of parameters. These parameters may enter the models in various ways, such
as system geometry, material properties, system configuration, varying bound-
ary, and initial conditions. This parametric dependence presents a unique set of
challenges for MOR. Since a reduced model is usually obtained by solving the
expensive full model, thus, one cannot afford to construct a new reduced model
every time a parameter is changed. This requires repeated simulations or mea-
surements of the full model for every parameter value, making untenable demands
on computational resources and unfeasible design process. In addition, paramet-
ric dependencies don’t always remain symbolically present in large-scale models.
For example, in the finite element (FE) method, the geometric features are often

97
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lost in the preprocessing meshing stage. As such, a new FE model is needed for
every new parametric variation. Hence, the desired approach is to develop para-
metric MOR techniques to construct parametric reduced models that preserve the
parametric dependency as symbolic variables and, at the same time, require lesser
computational demands. The aim of PMOR is therefore two-fold;

1. To construct parametric ROM that approximates the original full-order dy-
namical system with high-fidelity over a range of parameters.

2. The parametric ROM should be computationally tractable to handle.

We begin by considering a class of large-scale nonlinear parametric systems rep-
resented in state-space form as:

ẋ(t) = N (x(t),u(t) : µ),

y(t) = G(x(t)).
(6.1)

Here t ∈ [0, T ] denotes the time with final time T ∈ R+, x(t) ∈ Rn represent time-
dependent parameterized state as the solution of (6.1), n being the dimension of
the state-space model, u ∈ Rm is the input (excitation) vector, y(t) ∈ Rp is the
measurement (observation) vector, µ ∈ P ⊂ Rq is the input parameter vector,
representative of physical variables characterizing an operating point, where the
parameter space P represents a closed and bounded subset of the Euclidean space
Rq, q ≥ 1, N () : Rn×Rm×Rq → Rn and G : Rn → Rp represent the two nonlinear
parametric mappings.

Parametric MOR seeks to replace such high-fidelity models by reduced models
that feature a dramatically lower computational complexity yet retaining the most
essential features of the map N and guaranteeing that the error between the
solution of the reduced model and the original one stays below the desired value.
The reduced model is usually obtained by applying a (Petrov) Galerkin projection
method (cf. Section 2.1.1) that enforces the dynamics to evolve on a low-dimension
subspace (r << n) of original state space, with:

ẋr(t) = WTNr(Vxr(t),u(t) : µ),

yr(t) = Gr(Vxr(t)),
(6.2)

where xr = VTx ∈ Rr is the reduced state vector and V,W ∈ Rn×r are the or-
thogonal projection matrices. It should be noted here that the idea behind PMOR
is to allow any parameter variation in reduced subspace itself without having to
repeat the reduction step i.e, the ROM derived should permit any parametric
changes and at the same time should have a low computational requirement than
the full order model.
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Parametric MOR has seen a prominent success in recent years. For example,
parametric reduced models are used to effectively capture the coupled structural
and fluid dynamic behavior of aeroelastic performance of an aircraft over a range of
flight conditions [8, 186, 231]. This has enabled rapid characterization of aircraft’s
flight conditions, calculations that would instead require weeks of computational
time. Reduced parametric models have also been involved in the design and syn-
thesis of semiconductor devices, see, e.g., Lee et al. [182], and Feng et al. [113, 111].
In control design, it is often desired to avoid designing a new controller every time
a system parameter is changed, which otherwise can result in an unmanageable
online controller. As such, significant contributions have emerged in this direc-
tion [233, 153, 7]. Furthermore, design and control also involve optimizations,
in which the optimal configuration concerning a particular performance objective
(e.g., minimal energy, maximum throughput, etc.) is needed. This requires re-
peated runs for varying parameter configurations. Thus, parametric ROMs play
a crucial role in optimizations [34, 105, 312]. A combination of model reduction
and domain decomposition has been developed for shape optimizations optimal
control [12, 13]. Uncertainty qualification is another domain in which repeated
model evaluations are required, e.g., in Monte Carlo sampling [65, 97], or PDEs
with random coefficients [101].

Some of the famous PMOR methods include rational interpolation methods
such as tangential interpolation method [47], moment-matching methods for para-
metric systems [51, 113, 160], balanced truncation methods [39], proper orthogo-
nal decomposition (POD) based methods [232, 193], reduced basis (RB) method
[251], and parametric MOR by matrix interpolation [224] for linear systems. The
different strategies employed in these methods are discussed next.

6.2 Different strategies for generating parametric
ROMs

In the following, we provide a brief survey of different strategies for constructing
parameterized reduced models. Many of these methods are broadly applicable
with any reduction approaches discussed in previous chapters. We consider µ
as the parameter of interest which belongs to a single domain P ⊂ Rq. However,
various studies have adopted the strategy to first split P into multiple subdomains
and then construct ROMs in each subdomain [10, 95, 99, 147, 228, 303].

6.2.1 Global basis approach

This class of methods construct a single pair of basis matrices V and W by
sampling information over a range of parameters to produce near interpolants
across the needed range of parameter values. The ROM takes the form as in (6.2).
One of the common practices to obtain the global basisV andW is to concatenate
the local basis matrices obtained for several parameter samples µi : i = 1, 2, ..., q.
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Let V1, ...,Vq and W1, ...,Wq be the local basis matrices obtained at µ1, ...,µq,
then global version of V and W are constructed as:

V =
[
V1, V2, · · · Vq

]
and W =

[
W1, W2, · · · Wq

]
. (6.3)

Note that, it is very likely that the local matrices may contain similar components,
resulting in possible rank-deficient global basis matrices V and W. To circumvent
this issue, the concatenation step is frequently followed by an SVD or a rank
revealing QR factorization. This eliminates the rank-deficient components from
V and W, resulting in global basis matrices with orthonormal columns. It is
also worth noting that, while theoretically, it does not matter whether the local
matrices Vi and Wi : i = 1, 2, ..., q are orthogonalized before the concatenation
step as the reduced model is calculated by the range and not by a specific basis.

Any of the approaches discussed in Chapters 3 and 4 can be used to obtain the
local basis matrices. The technique of choice, however, leads to distinct attributes
in the reduced model. For instance, in linear parametric systems, the concatena-
tion method is beneficial when the local basis matrices are constructed using the
rational interpolation methods described in Section 2.2.6. According to Theorem
2.8, yet after concatenation, if the SVD performed on the concatenation matrices
removes only the zero singular values, the resulting reduced model interpolates the
original model at every parameter interpolation point and frequency combination
used while constructing the local bases. This is in contrast to, say, if the local
basis is obtained via the balanced truncation method. Therein, the result of the
concatenation of basis no longer guarantees the reduced model to be balanced at
parameter value µi. Nevertheless, because the reduced subspace retains the essen-
tial basis truncation information of the individual parameters, the concatenation
of local balanced basis may still provide a decent reduced parametric model.

6.2.2 Local bases approach

Another possible and widely adopted approach is to construct several local basis
matrices by sampling the parametric space at points µi : i = 1, ..., q. After collect-
ing the local basis matrices Vi and Wi at these samples, one can proceed by either
interpolating the local bases, the local reduced models, or local transfer functions
(in case of linear systems). However, care has to be taken during interpolation. For
instance, while interpolating local bases, a straightforward interpolation of entries
in basis vectors might result in an interpolated quantity that doesn’t retain desir-
able attributes. As pointed out in Ref. [8], the quantity to be interpolated should
be the underlying subspace rather than the local basis. As a result, an improved
technique interpolates the subspace belonging to Vi and Wi on a tangent space to
a manifold of these subspaces tailored to preserve desired properties [8]. However,
this method has a disadvantage that a new basis matrix for a new parameter µ∗

requires the evaluation of terms like WTE(µ∗)V and WTA(µ∗)V which depend
on original system dimension n, making the operations expensive. This issue has
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been addressed for affine parametric dependence in Ref. [273] wherein the terms
that do not depend upon the parameters are precomputed beforehand. However,
a feasible approach to treat the general nonaffine case is to interpolate reduced
state-space components rather than the basis matrices themselves. This approach
is adopted in Refs. [6, 9, 91, 189, 224]. In the following, we discuss the application
of parametric MOR via matrix interpolation in nonlinear systems.

6.3 Nonlinear parametric MOR using matrix inter-
polatory framework

Parametric MOR via matrix interpolation for linear systems was first described
by Panzer et al. [224, 129], and recently for nonlinear systems in Ref. [240]. The
overall scheme consists of two main stages: the offline stage and the online stage.
The offline stage is usually the most expensive one and requires a high computation
requirement. The online stage, on the other side, is desired to be cost-effective
to meet the requirements for real-time applications. During the offline stage, the
parametric PDE is discretized in spatial domain using the usual finite difference
(FD), finite elements or finite volume (FV) scheme. The discretization is carried
out at different parametric instances µi : i = 1, 2, ..., q to obtain a large-scale
family of non-parametric models given as:

ẋi(t) =Ni(xi(t),u(t)), (6.4a)

yi(t) =Gi(xi(t)). (6.4b)

These large-scale models are then reduced by any nonlinear reduction scheme like
snapshots based methods including proper orthogonal decomposition (POD) [306],
dynamic mode decomposition (DMD) [241], singular value decomposition (SVD)
[279]. Methods based on variational analysis [47, 112], or linearizations such as tra-
jectory piece-wise linear method (TPWL) [249], bilinearization method [33, 231],
quadratic method [81], or interpolatory/moment-matching methods, proposed in
Refs. [237, 242, 239, 239, 25, 24] can also be used.

After constructing the local projection matrices Vi and Wi corresponding to
each full-model, a family of reduced models can be then obtained as follows:

ẋr,i(t) = WT
i Ni(Vixr,i(t),u(t)), (6.5a)

yr,i(t) = Gi(Vixr,i(t)), (6.5b)

where xr,i ∈ Rr,Vi,Wi ∈ Rn×r, i = 1, 2, ..., q.
Furthermore, the underlying nonlinearity in these models can be efficiently

evaluated using hyperreduction schemes such as empirical interpolation method
(EIM) [36], DEIM [80], best point method [217], the missing point estimation
method [28] or the DMD method (as described in Chapter 4). Using the DEIM
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via Algorithm 3, the resulting model takes the form:

ẋr,i(t) = βi,DEIM Ni(γi,DEIMxr,i(t),u(t)), (6.6a)

yr,i(t) = Gi(Vixr,i(t)), (6.6b)

where the terms βi,DEIM = WT
i Udi(P

T
i Udi)

−1 ∈ Rr×md and γi,DEIM = PT
i Vi ∈

Rmd×r are both independent of n and hence can be precomputed. Note that each
projection basis Vi,Wi,Udi,Pi is obtained independently for each parametric
variation µi : i = 1, 2, ..., q. Now, in order to obtain the reduced model for any
new parametric choice outside the training set, we proceed with the interpolation
of the local neighboring models.

A natural choice would be to take the weighted sum of the nearest neighbors.
This choice of interpolation is equivalent to summing up their underlying systems
of ODEs, and can be inaccurate if the respective state variables represent different
physical quantities. Thus, for a meaningful interpolation of system matrices, the
states of the reduced system have to be described in a generalized coordinate
system by relating basis Vi to a reference basis. This is achieved by the state
transformations xr,i = T−1

i x∗
r,i followed by pre-multiplying the matrix Mi ∈ Rr×r

from the left which leaves the input-output behavior unchanged, i.e.,

x∗
r,i = Miβi,DEIM︸ ︷︷ ︸

Ψ∗
r,i

Ni(γi,DEIMT
−1
i︸ ︷︷ ︸

Ω∗
r,i

x∗
r,i(t),u(t)), (6.7a)

yi(t) = Gi(ViT
−1
i︸ ︷︷ ︸

η∗
r,i

x∗
r,i(t)), (6.7b)

where matricesMi = (VT
i R)−1, T−1

i = RTVi and the matrixR ∈ Rn×r represents
the universal subspace which contains r dominant directions of evolution. The
columns of matrix R are constructed by first stacking all the local projection
matrices in a single matrix Vcat = [V1, V2, ... Vq] ∈ Rn×(q×r) and then taking its
SVD to retain r most significant directions.

During the online mode, the interpolated reduced model, for any new test
parameter µ∗ selected outside the training set, is obtained by taking the weighted
sum of the adjusted neighboring reduced-models as follows:

ẋ∗
r(t) = Ψ∗

r(µ
∗)Nr(Ω

∗
r(µ

∗)x∗
r(t),µ(t)) (6.8a)

yr(t) = Gr(η∗
r(µ

∗)x∗
r(t)) (6.8b)

where

Ψ∗
r(µ

∗) =

q∑
i=1

ωi(µ)Ψ
∗
r,i, Ω∗

r(µ
∗) =

q∑
i=1

ωi(µ)Ω
∗
r,i, η∗

r(µ
∗) =

q∑
i=1

ωi(µ)η
∗
r,i (6.9)

and where
q∑

i=1

ωi(µ) = 1, µ ∈ P ⊂ Rq
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The overall scheme is presented in Fig. 6.1

High-fidelity discretization

for

Generation of

solution snapshots
by POD/greedy algorithms;

construction of matrices

and

Adjustment of reduced-models

Assembling the interpolated ROM

where

Generation of solution snapshots

and recovering

for visualization and postprocessing

Construction of universal

Calculating neighboring models

and weights

Evaluating
outputs of interest

and adjustment

andmatrices

projection matrix

Figure 6.1: Nonlinear parametric MOR via matrix interpolation at a glance

6.4 Numerical validation

In the following, we will demonstrate the PMOR strategy on three benchmark
parametric nonlinear systems (i) Nonlinear 1D Burgers’ equation, (ii) Nonlinear
2D Burgers’ equation, and (iii) 1D Reaction-Diffusion equation.

6.4.1 Nonlinear 1D Burgers’ equation

To test the parametric scheme, we first considered the one-dimensional, parabolic,
quasi-linear, viscous Burgers’ equation:

∂u

∂t
(x, t) + u(x, t)

∂u

∂x
(x, t) =

1

Re

(
∂2u

∂x2
(x, t)

)
x ∈ (0, L), t ∈ [0, T ], (6.10)
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subject to the following initial and boundary conditions:

u(x, 0) = 1− sin((2π/L)x), (6.11a)

u(0, t) = r(t);
du

dx
(L, t) = 0. (6.11b)

After a semi-discretization using finite difference scheme with n grid points, we
obtained the following quadratic-bilinear structure of the state-space model:

ẋ(t) = Ax(t) +H (x(t)⊗ x(t)) + (Nx(t) +B)r(t), (6.12)

where x(t) ∈ Rn and (x⊗ x) is the Kronecker product. The matrices A,H, and
N can be seen in Appendix (A.1). A single control input r(t) was applied on the
left boundary and the desired output was measured on the right boundary. The
various parameters used during the simulation are enlisted in Table 6.1

Table 6.1: 1D Burgers’ equation: Parameters of the selected scenarios

Method Parameters

Full model n = 500, L = 1, t ∈ [0, 3s], dt = 0.01s, µ = [0, 1]

ROMd
NLMM: r = 20, ζ̇(t) = tanh(t) + 5e−4, i = 1, K = 101
DEIM: md = 10, ns = 250

Test input r(t) = 0.5(cos(2π/10)t)

Table 6.2: 1D Burgers’ equation: Weights and neighboring samples for the two
test viscosity values

Test Sample
Point

Neighboring
Sample Points

weights
chosen

µ1 =0.857 0.78 & 0.89 ω1 = 0.3, ω2 = 0.7
µ2 =0.186 0.12 & 0.23 ω1 = 0.4, ω2 = 0.6

Now, ten FD models, with size n = 500 were generated by varying the viscosity
parameter (µ = 1/Re) between µ = 0 and µ = 1, using an implicit Euler’s scheme
(dt = 0.01) which is accurate but expensive. The reduced models of size r = 20
corresponding to each of these models were obtained via NLMM (Algorithm 4).
The training signal was provided by a single signal generator (j = 1, K = 101)
with dynamics ζ̇(t) = tanh(t) + 5e−4 and the nonlinearity was approximated via
DEIM (Algorithm 3), with mD = 10. To test the interpolation scheme, the model
at µ = 0.857 was obtained by interpolating the neighbouring reduced models at
µ = 0.78 and µ = 0.89 (which took an online CPU time of 4.12s as compared
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to 509s for the FOM). Another model for µ = 0.186 was similarly obtained by
interpolating the ROMs at µ = 0.12 and µ = 0.23 (online CPU time of 4.28s)
with appropriately chosen weights as given in Table 6.2. The two test parameters
selected, cover the lower and higher range of the parametric space of interest. The
directly reduced models (ROMd) corresponding to µ = 0.857 and µ = 0.186 were
also stored for the sake of comparison. Figure 6.2 shows the comparison for the
output response of 1D Burgers’ equation for the two test parameter values and
Fig. 6.3 depicts the relative L2 norm errors between the FOM and reduced models.
It is seen clearly that the interpolated ROM accurately replicated the response of
FOM just like the directly reduced model with relatively less error.

Figure 6.2: 1D Burgers’ equation: Comparison of output responses for two test
parameter values.

Figure 6.3: 1D Burgers’ equation: Comparison of relative L2 norm error between
FOM and ROMs for (left) µ = 0.857, (right) µ = 0.186
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6.4.2 Nonlinear 2D Burgers’ equation

Next, we considered the 2D version of the Burgers’ equation. The governing
equations are described by the following coupled PDEs:

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
=

1

Re

(
∂2u

∂x2
+

∂2u

∂y2

)
, (6.13a)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
=

1

Re

(
∂2v

∂x2
+

∂2v

∂y2

)
, (6.13b)

(x,y) ∈ Ω = (a, b)× (c, d), t ∈ (0, T ),

subject to the initial conditions:

u(x,y, 0) = ϕ1(x,y),

v(x,y, 0) = ϕ2(x,y),

and the boundary conditions:

u(a,y, t) = f1(y, t); u(b,y, t) = f2(y, t),

u(x, c, t) = f3(x, t); u(x, d, t) = f4(x, t),

v(a,y, t) = g1(y, t); v(b,y, t) = g2(y, t),

v(x, c, t) = g3(x, t); v(x, d, t) = g4(x, t),

where u(x,y, t) and v(x,y, t) are the two velocity components. The spatial do-
main is discretized uniformly into nx − 1 and ny − 1 intervals in x and y direc-
tion, respectively for a nx × ny grid making the total dimension of the problem
2(nx− 1)(ny− 1). The initial and boundary conditions are derived from the exact
traveling wave solutions as given in Ref. [115].

u(x,y, t) =
3

4
− 1

4[1 + exp((−4x+ 4y − t)Re/32)]
, (6.14a)

v(x,y, t) =
3

4
+

1

4[1 + exp((−4x+ 4y − t)Re/32)]
. (6.14b)

The finite-difference scheme of 2D Burgers’ equation can be seen in Appendix
A.2. An input of r(t) = 0.5 sin(t) was applied on the left boundary of u and
v. Similar to the one-dimensional case, fifteen FD models were generated for a
spatial grid size of 30 × 30, by varying Re between Re = 0 and Re = 50 using
a fully implicit scheme Ref. [30], for an equally spaced interval of 0.03 between
[0, T ], T = 5. The corresponding reduced models were obtained using r = 15
NLMM basis constructed via Algorithm 4, for each full-order model and md = 50
DEIM basis were generated for approximating the nonlinearity using Algorithm
3. The signal generator with dynamics ζ̇(t) = −e−t − 0.08 was chosen to excite
the system for i = 1 and K = 20 in this case.
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During the online stage, the model at Re = 24.64 was obtained by interpolating
the neighbouring reduced models atRe = 21.42 andRe = 25 with weights ω1 = 0.1
and ω2 = 0.9 respectively which took an online CPU time of 1.8s as compared to
the 84.99s for the original full model. Figure 6.4 shows the solution of u of directly
reduced ROM (ROMd) and the interpolated ROM at time-step nt = 50, 100 along-
with the absolute of errors between the two. It is seen that the interpolated
performs satisfactorily just like the directly reduced ROM for the test parameter
outside the training set.

Figure 6.4: 2D Burgers’ equation:Comparison of u between directly reduced model
and the Interp. model at: (top) nt = 50, (bottom) nt = 100 for Re = 24.64 in the
spatial domain Ω = [0, 1]× [0, 1].

Table 6.3: 2D Burgers’ equation: Parameters of the selected scenarios

Method Parameters

Full model n = 1682, (a, b)× (c, d) = (0, 1)× (0, 1), t ∈ [0, 5s], Re = [0, 50]

ROMd
NLMM: r = 15, ζ̇(t) = −e−t − 0.08, i = 1, K = 20
DEIM: md = 50, ns = 250

Test input r(t) = 0.5 sin(t)
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6.4.3 1D Reaction-Diffusion equation

Finally, we considered the 1D reaction-diffusion equation. The governing PDE is
given as:

∂ϑ

∂t
(x, t) = θ

∂2ϑ

∂x2
(x, t)− λ(ϑ3(x, t)− ϑ(x, t)), (6.15)

with initial condition and boundary conditions as:

ϑ(x, 0) = 1− sin(πx/L), x ∈ (0, L),

ϑ(0, t) = u(t),
∂ϑ

∂x
(L, t) = 0, t ∈ (0, T ).

Here θ and λ are the two parameters of interest, which adjust the relative bal-
ance between the diffusion term and the nonlinear term. An input of u(t) =
0.5(cos(πt) + 1) was applied on the left boundary and the output y(t) was as-
sumed to be the right boundary. The various parameter used for this case are
enlisted in Table 6.4

Figure 6.5: 1D Reaction Diffusion equation: (left:) Output response (right:) Il-
lustration of 2D parametric space

Table 6.4: 1D Reaction-Diffusion equation: Parameters used

Method Parameters

Full model n = 1000, L = 1, λ = 1, t ∈ [0, 2s], θ = [0.1, 1], λ = [1, 10]

NLMM
r = 30, ζ̇(t) = 0.5e−t/5 + π cos(πt)e−t/5 + sin(πt)e−t/5, i = 1, K = 61,
tk ∈ [0, 10s]

DEIM md = 10, ns = 200
Test Input u(t) = 0.5(cos(πt) + 1)
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For the application of the parametric scheme, nine FD models of size n = 1000
were obtained using an implicit Euler’s scheme with equally space interval of
dt = 0.01, for θ = {0.1, 0.5, 1} and λ = {1, 5, 10}. The reduced models of size
r = 30 were generated for each sample via NLMM-DEIM (cf. Algorithm 5). To
test the proposed scheme, two test parameter values of p1 = (λtest, θtest) = (3, 0.3)
and p2 = (7.5, 0.75), were chosen which cover the lower and higher variations of
parametric space. Under this setting, the interpolation was performed between
four neighboring reduced models as depicted in Fig. 6.5. The weights and the
neighboring ROMs used for interpolation are enlisted in the Table 6.5.

Figure 6.6: 1D Reaction-Diffusion equation: Comparison of relative L2 norm error
between FOM and ROMs for: (left) λtest = 3, θtest = 0.3, (right) λtest = 7.5, θtest =
0.75

The online CPU times for both the two test parametric models were recorded
around 3.56s which was way less than the full model requirement of 110s. Figure
6.5 shows the output response (measured on the right boundary) of 1D Reaction-
Diffusion model for the two test parameters and Fig. 6.6 presents the relative L2

norm errors between FOM and the reduced models. As can be seen in the two
parameter setup also, the directly reduced ROM and the interpolated ROM match
to a high degree of accuracy.

Table 6.5: 1D Reaction-Diffusion equation: Weights and neighboring samples for
the two test samples values.

Test Sample
Points

Neighbouring
Samples

Weights
Chosen

θ = 0.3, λ = 3
θ = {0.1, 0.5};
λ = {1, 5}

ω1 = 0.1, ω2 = 0.3
ω2 = 0.4, ω4 = 0.2

θ = 0.75, λ = 7.5
θ = {0.5, 1};
λ = {5, 10}

ω1 = 0.1, ω2 = 0.3
ω2 = 0.4, ω4 = 0.2
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In order to test the efficacy of the proposed scheme across the entire parametric
space, we also obtained the average errors for all test models, which is presented
in Fig. 6.7. We can observe that the parametric ROMs obtained via the proposed
scheme produce high-fidelity approximations of the actual responses across a wide
range of parametric variations.

Figure 6.7: Average errors of the different parametric values across the parametric
space.

6.5 Discussions and limitations

The parametric scheme described above benefits from generating a new FD model
for every parametric variation. Once the local basis matrices and the global sub-
space are obtained (which is to be calculated only once), the interpolation of the
neighboring nonlinear models is determined online. Thus, the proposed method
meets the requirements of parametric MOR. Furthermore, the proposed interpola-
tion scheme is independent of any nonlinear projection-based reduction technique.
One can also employ a conventional POD-DEIM method to obtain the family of
reduced models for various parameters. However, we advocate the use of the
NLMM-DEIM framework because it yields notable savings in the offline calcula-
tion of the projection basis.

Kindly note that the dimension of the reduced models (r), obtained via NLMM,
depends on the time-instances (K in Algorithm 4) chosen to capture the evolving
dynamics of the selected signal generator. This further depends on how quickly
the signal generator changes (e.g., exponential growth/fall). Once the values of K
and r were obtained for a particular signal generator, then it needed to be tested
across multiple parameters. This was quantified by repeated reductions along the
parametric span of the problem. At the end, any redundant columns of the NLMM
basis were deflated using the SVD scheme. Though we tried using different dimen-
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sions of NLMM and DEIM basis during our tests, this only resulted in increased
offline and online CPU times without much improvement in the approximating
quality of the interpolating ROM, which mainly depends on taking more samples
in sensitive zones. Therefore, we chose the lowest dimensions of the NLMM basis
and DEIM, which provided satisfactory results without burdening the CPU. This
is evident from Fig. 6.8.

Figure 6.8: CPU time for different ranks of r,md for 1D Burgers’ equation

As far as the identification of the nearest neighbors for a particular parameter
is concerned, it was determined by their proximity to the desired parameter value.
That means for a single-dimensional parametric space, the models on each side of
the required parameter are the neighbors. For two-dimensional space, the mod-
els enclosing the desired parameter are the neighbors. The weights assigned to
each neighboring model are inversely proportional to the distances of the selected
parameter value from its respective neighbors.

Though the proposed scheme performs satisfactorily by taking a uniform sam-
pling across the parametric space, it suffers from certain limitations. First, the
samples are chosen manually without any information from the model. This can
sometimes lead to oversampling or undersampling scenarios of the parametric
space. Hence an adaptive sampling scheme with more samples taken at highly
sensitive zones can be more helpful. This problem will be addressed in the next
chapter. Furthermore, the proposed strategy has been demonstrated for models
only for up to two parameters. The scheme can be extended for models with
higher dimensional parametric space. However, care must be taken to avoid the
exponential growth of basis due to the “curse of dimensionality”.



6.6. Chapter Summary 112

6.6 Chapter Summary

In this chapter, we focused on reducing large-scale models with parametric depen-
dencies. We highlighted some issues while simulating such models for optimization
and control and how conventional MOR methods fail to produce reliable results
for these models. We also discussed some common design strategies of parametric
ROMs. Towards this aim, we proposed a PMOR framework for large-scale non-
linear dynamical systems based on matrix interpolation. The method is based
on the offline-online framework. First, a family of large-scale models is generated
for the parametric range of interest. The resulting models are then reduced via
NLMM-DEIM in the offline stage, followed by back projecting on a common uni-
versal subspace. Finally, the nonlinear reduced model for any new parameter is
obtained by interpolating the neighboring nonlinear models using the matrix inter-
polation scheme inspired by the matrix interpolation reported earlier. In the end,
we presented some numerical simulations demonstrating the use of this scheme
on certain nonlinear models. The results thus obtained are in agreement with the
theoretical concepts. The next chapter will focus on the main issue among all
PMOR methods, i.e., the adaptive parametric sampling.



Chapter 7

Adaptive Parametric Sampling
Scheme for Nonlinear Systems

In the previous chapter, we examined the parametric MOR in nonlinear systems.
We demonstrated the parametric MOR framework whereby PROMs are obtained
via interpolation of neighboring models. However, the issue of parametric sampling
remained elusive. In this chapter, we discuss different parametric space sampling
strategies to construct the local basis. Furthermore, to enhance the approximating
quality of the interpolated reduced models, we introduce a generalized framework
for adequate sampling of the parametric space. Finally, we will substantiate the
observations through numerical simulations of time-dependent parametric models
originating from circuit theory and MEMS.

7.1 Sampling schemes for reduction of parametric
systems

One of the most challenging step in the matrix interpolatory MOR method, dis-
cussed in previous chapter, is the sampling of parametric space. It involves select-
ing an adequate number of samples to cover the entire parametric region while
maintaining the offline computational costs to a minimum. For problems involv-
ing a small number of parameters, a uniform or random sampling, grid-based
sampling, Latin hypercube sampling, or a logarithmic sampling are the most sim-
plistic approaches. For a moderate number of parameters, a sparse-grid sampling
will be a practical approach. However, problems with a much higher-dimensional
parametric space (q > 10) require more sophisticated sampling approaches such
as problem-aware adaptive search of the parametric space. The drawback in a
uniform sampling scheme is that if few samples are selected in the initial training
set, the original solution manifold may not be adequately represented, leading to
a poor ROM with significant errors. If the parametric space is too fine, the offline
times can be prohibitively long, especially for higher parametric space dimensions.
On the other hand, logarithmic sampling works better if the complex frequency

113
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is selected as the running parameter and often results in under-sampling in most
sensitive zones and oversampling in less important regions. Although the Latin
hypercube sampling remains tractable for moderate values of parameters, it re-
quires a large number of sample points to ensure sufficient coverage. As far as
the random sampling approach is concerned, it results in a non-uniform paramet-
ric distribution with no relation to the nature of parametric dependence. Hence,
these standard sampling techniques fall under the category of “blind” sampling
or “open-loop gridding.” As such, an adaptive sampling scheme in which the un-
derlying system dynamics guide the selection of appropriate parameter samples
is highly desirable. This allows to moderate the refinement procedure iteratively.
Furthermore, it is desired that the sampling scheme should avoid the curse of
dimensionality for higher-dimensional parameter spaces.

Towards this direction, the greedy sampling method was first introduced by
Prud’Homme et al. [234] which was further developed in the RB framework for el-
liptical PDEs [300], parabolic PDEs [134], the steady incompressible Navier-Stokes
equation [299], the rational interpolation methods [112], and with POD methods
[200, 136, 52]. The greedy methods are based on the premise of adaptively select-
ing samples by discovering the locations in parametric space where the estimate of
the error in reduced-model is maximum. Afterward, the full model is generated as
these parametric locations for obtaining new information to update the reduced
models accordingly. In a general setup, the actual reduced-model error is used as
an indicator to find the worst-case parameter. This, however, leads to a compu-
tationally intractable algorithm since the full-order model is repeatedly solved at
many parameter samples. Therefore the most adopted approach is using a pos-
teriori error estimates for a given model [136]. For a low-dimensional parametric
regime, the process of finding the parameter with the highest error indicator or
error estimator is conducted using a simple grid search. For higher parameter
dimensions, the greedy sampling scheme is reformulated as a sequence of adaptive
model-constrained optimization problems [200]. These greedy sampling schemes,
though performing satisfactorily for a range of models, suffer from a few draw-
backs. Firstly these optimization problems have an explicit solution and become
convex only for the special case of a linear map between parameters and outputs.
Generally, the optimization problems are nonconvex and often converge to local
maxima. Secondly, the error indicators are not always the true representations
of the actual error. For further details, we refer the reader to Ref. [53] for an
excellent review on this topic.

Apart from greedy search methods, the appropriate selection of samples in
parametric space can be made by measuring the system’s sensitivity to paramet-
ric variations. A fundamental assumption in matrix interpolatory PMOR is that
the system dynamics remain restricted to the same dimensional subspace irrespec-
tive of the parametric variations. This assumption allows measuring the system’s
sensitivity to parametric variations by observing the change in attributes of the
projection matrices V(µ) to parameter changes. This can be quantified by mea-
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suring the change in the distance between the successive projection subspaces.
Since, for q uniformly placed parameter sample points (µ1, ..., µq), the corre-
sponding projecting subspaces (V1, V2, ... Vq) maybe not be equally apart (cf.
Fig. 7.1). As such, a parametric span with a larger subspace distance implies a
highly sensitive zone; hence more samples (and ROMs) must be added. Similarly,
less sensitive zones can be identified.

Figure 7.1: Illustration of a parametric subspaces

7.2 Adaptive sampling scheme

To begin with the adaptive sampling, we discuss the idea of subspace angles or
principal angles.

7.2.1 Notion of distance between subspaces

The notion of distance or gap between subspace is well known in geometric algebra
and is described using principal angles. To illustrate the idea, consider two r-
dimensional subspaces V and W of an n-dimensional Euclidean vector spaces Rn.
These subspaces are spanned by a set of r linearly independent vectors given as:

V = span{v1, .., vr} ⊂ Rn,

W = span{w1, .., wr} ⊂ Rn.

The conventional approach to obtain the subspace angle θV,W between subspaces
V and W is to first arrange the vectors as column vectors into two matrices as
follows:

A =
[
v1 v2 ... vr

]
, B =

[
w1 w2 ... wr

]
∈ Rn×r. (7.1)

Then, standard matrix algebra methods like singular value decomposition and QR
decomposition is applied to obtain:
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• r pair of singular unit vector vk,wk, and

• r singular values σk = cos(θk) = vk.wk.

However, this is a computationally intensive approach. Another feasible method,
as demonstrated by Wedin [304], is to find the r principal angles θi, (1 < i < r)
that characterize the angular relationship between the subspaces V and W as
follows:

cos(θV,W) =
r∏

i=1

cos(θi)

where the inner product is canonically defined on the Grassmann algebra corre-
sponding to the geometry in Rn.

Alternatively, the principal angles can be recursively defined as:

cos(θV,W) = max
a∈V

max
b∈W

aT b,

subject to ∥∥∥a∥∥∥ =
∥∥∥b∥∥∥ = 1, aTai = bT bi = 0, i = 1 : r − 1,

where the vectors a = {a1, ..., ar} and b = {b1, ..., br} are the principal vectors.
The expression for largest subspace angle between V and W is then given as:

θV,W = arccos(σr) = arcsin(
√

1− σ2
r),

where σr is the smallest singular value of VTW. Similarly the distance between
other subspaces can be obtained.

In what follows, we use the distance between subspaces to adaptively detect
the parametric space’s sensitive regions to resample the grid in the offline stage.
The user only needs to provide the maximum subspace tolerance value θmax to
be used during resampling. As a result, the same FD model will be used until
the tolerance angle is reached, and beyond that, a new model is obtained. The
automatic refining scheme is described as follows:

7.2.2 Single parameter case

For systems having a single parameter, a uniformly distributed sample space is
selected initially. Obviously, this sampling scheme shares the disadvantage men-
tioned before, however it is used to obtain a rough sample distribution that can
be refined later. After obtaining the projection matrices V i (i = 1, .., q) corre-
sponding to each parametric value µi, each subspace angle θi,i+1 is recorded and
compared with the maximum tolerance angle θmax and a ratio li,i+1 = θi,i+1/θmax

is obtained [294]. Then, a ceiling function of this ratio provides an intuitive way
of refining the initial parametric span, i.e., if this ratio equals one, no further di-
vision of parametric span is needed otherwise the parametric interval of [µi,µi+1]
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is divided into li,i+1 intervals, and the process repeats again. The algorithm ter-
minates when all the ratios li,i+1 are equal to one, indicating that all the relevant
parameter intervals are sufficiently divided, and all the subspace angles are smaller
than the maximum specified tolerance value.

7.2.3 Two parameters case

Similar to the single parameter case, equally spaced samples are chosen initially in
both directions µi,j (i, j = 1, .., q−1) of a 2D parametric grid and the corresponding
projection subspace bases Vi,j are obtained. Next, the distance between each
diagonal sample pair is calculated, and the sum of angles between opposite sample
pairs is recorded. This is to ensure that the parameter sensitivity of the model
is captured in both the parametric directions. Next, this angle is checked against
the maximum subspace angle and the following ratio is calculated

di,j =
θ(i,j),(i+1,j+1) + θ(i+1,j),(i,j+1)

θmax

Figure 7.2: The adaptive sampling procedure demonstration for a 2-dimensional
parametric grid
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Similarly, a ceiling function of the ratio di,j is used to resample the initial grid.
If the ratio di,j is larger than 1, the grid is divided into four small grids, which
introduces five new samples (four at the midpoints of each side of the current grid
and the fifth at the center of the grid). The process is repeated for the grids from
the previous iteration, and the algorithm stops when all the ratios di,j are equal
to one. The adaptive scheme thus divides the initially selected grid into many
smaller sub-grids, scanning each grid iteratively. This generates new samples in
highly sensitive zones while the remaining samples are kept the same. Figure
7.2 depicts a scenario where three iterations are used to refine the initial grid
adaptively, and Fig. 7.3 presents the flowchart of the proposed sampling scheme.

max

max

Do

Figure 7.3: Automatic adaptive sampling scheme for matrix interpolatory pMOR
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7.3 Numerical validation

This section delineates the proposed adaptive scheme on four nonlinear benchmark
problems. The first two models have a single parameter dependency and the
remaining models have two parameters.

7.3.1 Single parameter examples

1D Burgers’ equation

We first consider the one-dimensional viscous Burgers’ equation (cf. 6.10). The
initial and boundary conditions are same as in Section 6.4. The various parameters
used are enlisted in Table 7.1

Table 7.1: 1D Burgers’ equation: Parameters of the selected scenarios

Method Parameters

Full model n = 500, L = 1, t ∈ [0, 1.5s], h = 10−3s,µ ∈ P := [4× 10−4, 4× 10−3]

ROMd
NLMM: r = 20, ζ̇(t) = tanh(t) + 5e−4, i = 1, K = 101
DEIM: md = 10, ns = 250

Adaptive
Sampling

θmax = 40o

Test input r(t) = 0.5(cos(2π/10)t)

For our evaluations, we varied µ ∈ P := [4 × 10−4, 4 × 10−3]. The output
was taken as the average of state-vectors x and a single control input of r(t) =
0.5 cos((2π/10)t) was applied on left boundary. To test the proposed adaptive
scheme, four FD models, each of size n = 500, were generated using implicit
Euler’s scheme with step-size of 10−3 for different viscosity values. This resulted
in a uniform grid with four sample points for the initialization of the adaptive
scheme. The local reduced-order models each of size r = 20, corresponding to
each FD model, were constructed using the NLMM-DEIM (cf. Algorithm 5). The
sample points µi and subspace angles for each parameter with its corresponding
neighbor θi,i+1 were recorded, and are enlisted in Table (7.2). It is seen clearly that
the sensitivity of the model to parameter variations, as indicated by the subspace
angles, increases as viscosity increases. This information is effectively captured
by the subspace angles and thus clarifies the relative fitness of parametric mesh.
For this model, the subspace angle tolerance was selected as θmax = 40o, and the
parametric space was re-meshed for higher viscosity values wheres for low-viscosity
values no refinement was needed. When the adaptive sampling algorithm finished,
two new samples were obtained, i.e., µ = 2.2 × 10−3 and µ = 3.4 × 10−3 in the
sensitive area (cf. Table 7.2), and the corresponding projection basis and the
reduced models were stored. These ROMs were then transformed to the same set
of coordinates.
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Figure 7.4: 1D Burgers’ equation: Comparison of the output response for µtest =
2× 10−3 (FOM size n = 500, ROMs size r = 20, DEIM indices md = 20)

Figure 7.5: 1D Burgers’ equation: Comparison of the relative L2 norm error
between FOM and interpolated ROMs for different parameter

To highlight the advantages of the adaptive sampling scheme, a test parameter
of value µtest = 2 × 10−3 (outside the training set) was selected randomly in the
region of resampling and three different ROMs of sizes r = 20 were obtained. The
first ROM was obtained via adaptive grid i.e., by interpolation of ROM 2 at µ =
1.6× 10−3 and ROM 3 at µ = 2.2× 10−3 (cf. Table 7.2). The second interpolated
ROM was obtained from the initial grid via ROMs 2 and 4, respectively. The
third ROM was directly obtained via the NLMM-DEIM procedure for reference.
Figure 7.4 shows the output response of (6.10) for the chosen test parameter. It
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Table 7.2: 1D Burgers’ equation: Samples and subspace angles in the adaptive
sampling scheme

µi 0.0004 0.0016 0.0028 0.004
Initialization

θoi,i+1

36.92o

(1)
41.59o

(2)
46.37o

(2)

µi 0.0004 0.0016 0.0022 0.0028 0.0034 0.004
Iter I

θoi,i+1

36.92o

(1)
20.65o

(1)
20.94o

(1)
23.82o

(1)
22.55o

(1)

can be seen that the ROM via adaptive grid effectively captures the true response.
Besides the qualitative comparison via output response, a quantitative analysis for
250 query points in the interval µ = [4×10−4, 4×10−3] was carried out. Figure 7.5
shows the relative L2 norm error between the FOMs and interpolated ROMs. As
expected, the error is small in the proximity of grid points and large elsewhere due
to interpolation error. The adaptive grid naturally yields small L2 norm errors
than the initial grid for higher viscosity values.

MEMS microswitch

In the second test study, we examined the time-dependent, large-amplitude dy-
namics of a highly nonlinear squeeze-film damping problem involving electrostatic,
mechanical and fluidic components [187, 215, 90, 311]. This nonlinear benchmark
model is used as a pressure sensor due to its extreme sensitivity to surrounding
atmospheric conditions [163, 195]. The switch consists of a polysilicon fixed-beam
suspended over a polysilicon pad on a silicon substrate (cf. Fig. 7.6). An elec-
trostatic force pulls the beam down to the pad if an external voltage is applied
between the beam and the substrate. The dynamic behavior of this coupled elec-
tromechanical system can be modeled with 1D Euler’s beam equation and 2D
Reynolds squeeze film damping equation given as:

ÊI0h
3w

∂4z

∂x4
− S0hw

∂2z

∂x2
=Fe +

∫ w

0

(p− pady) (7.2a)

− ρ0hw
∂2z

∂t2

∇.[(1 + 6K)z3p∇p] =12µ
∂(pz)

∂t
(7.2b)

where the electrostatic force across the plates is given as Fe = −(ϵ0wv2/(wz2))
which is due to applied input voltage u(t) = (3cos(2ωt)+7cos(0.5ωt))2 with ω = 2π
Ghz. The measured output is the height of the beam z. The length of beam is
l = 610µm whereas a width is w = 40µm. ϵ0 and µ represent the permittivity
and permeability respectively. I0 = 1/12 is the moment of inertia, Ê = 149GPA
represents the Young’s modulus, K = 0.064/z0 is the Knudsen number, S0 = −3.7
represents the stress coefficient and ρ0 = 2300kg3 is the density. By assuming the
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state variables x1 = z, x2 = ∂x3/∂t and x3 = p where p is the pressure, the
finite discretization scheme with N steps along the length of the beam and M
steps along the width resulted in the following state-space model of dimension
(2 +M)N :

dx1

dt
=

x2

3x2
1

dx2

dt
=
2x2

2

3x3
1

+
3x2

1

ρ0hw

[∫ w

0

(x3 − pa)dy + S0hw
∂2x1

∂x2

− EIh3w
∂4x1

∂x4

]
− 3ϵ0

2ρ0h
u(t)

dx3

dt
=− x2x3

3x3
1

+
1

12µx1

∇
[
(1 + 6

λ

x1

)x3
1x3∇x3

]
(7.3)

where the boundary conditions are given as:

z(x, 0) = 2.3µm, p(x,y, 0) = 1.103× 105 Pa,

z(0, t) = z(l, t) = 2.3µm,
∂p(0,y, t)

dx
=

∂p(l,y, t)

∂x
= 0

p(x, 0, t) = p(x,w, t) = 1.103× 105 Pa.

i

Figure 7.6: The MEMS switch

For this model, the beam width was selected as the running parameter. We
selected a uniform initial grid of four sample points for varying beam widths
µ ∈ P := [45, 75] with an equal span of 10µm. As such, four different FD
models, each of dimension n = 450, were obtained. The reduced-order models of
size (r = 25), corresponding to each full model, were constructed using 500 POD
snapshots obtained via implicit Euler’s scheme with a step size of 10−6. A subspace
tolerance of θmax = 10o was selected for the adaptive sampling scheme. At the end
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Table 7.3: MEMS microswitch model: Samples and subspace angles in the adap-
tive sampling scheme

µi 45 55 65 75
Initialization

θoi,i+1 5.28o
17.80o

(2)
11.59o

(2)

µi 45 55 60 65 70 75
Iter I

θoi,i+1 5.28o 8.27o 9.59o 6.04o 5.47o

of the adaptive scheme, the grid was remeshed, and two new sample points were
introduced, i.e., at w = 60µm and w = 70µm. The subspace angles and the final
sample points can be seen in Table 7.3. The ROMs were then transferred to the
same set of coordinates, and a universal subspace was constructed, as explained
in the previous section.

Figure 7.7: MEMS microswitch model: Comparison of the output response of for
test parameter wtest = 73µm FOM size n = 450, ROMs size r = 25

To proceed with the online testing, a test parameter of value wtest = 73 µm
was randomly selected. The interpolated ROM was then obtained from neighbor-
ing models for parameter values w = 70 µm and w = 75 µm resp. Similar to
the previous model, the interpolated ROM via adaptive grid was compared with
the ROM obtained from the initial grid as shown in Fig. 7.7. The quantitative
comparison of the ROMs for 250 test samples in the same parametric span is pre-
sented in Fig. 7.8. It is clearly seen that ROMs obtained through adaptive grid
yield better approximations than obtained via the initial grid for increasing switch
widths.
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Figure 7.8: MEMS microswitch model: Comparison of the relative L2 norm error
between FOM and the interpolated ROMs

7.3.2 Two-parameter examples

1D Reaction-Diffusion equation

Next, we considered the one-dimensional Reaction-Diffusion equation also known
as the Chafee-Infante equation.

∂ϑ

∂t
(x, t) = δ

∂2ϑ

∂x2
(x, t)− λ(ϑ3(x, t)− ϑ(x, t)), (7.4)

with initial condition and boundary conditions as:

ϑ(x, 0) = 1− sin(πx/L), x ∈ (0, L),

ϑ(0, t) = u(t),
∂ϑ

∂x
(L, t) = 0 t ∈ (0, T ).

Here, λ and δ are two parameters of interest. The various parameter used during
the simulations are mentioned in Table 7.4

Table 7.4: 1D Reaction-Diffusion equation: Parameters used

Method Parameters

Full model n = 1000, L = 1, λ = 1, t ∈ [0, 3s], δ = [0.1× 0.3], λ = [1× 2]

NLMM
r = 30, ζ̇(t) = 0.5e−t/5 + π cos(πt)e−t/5 + sin(πt)e−t/5, i = 1, K = 61,
tk ∈ [0, 10s]

DEIM md = 50, ns = 200
Adaptive
Sampling

θmax = 100o

Test Input u(t) = 0.5(cos(πt) + 1)
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The PDE was discretized in space for n = 1000 spacial grid points using the
FDM, and the output of interest was measured on the right boundary. With a
diffusion-dominated regime (λ > δ), nine FD models were initially obtained at
an equidistant sample spacing on a 2D parametric grid as shown in Fig. 7.9.
The high-fidelity models were solved via implicit Euler’s scheme with a uniform
step size of 0.01. The reduced models of size r = 30 were constructed using the
NLMM procedure (via Algorithm 4), and the nonlinearity was efficiently evalu-
ated using md = 50 DEIM indices (via Algorithm 3). The subspace angles for
this two-parameter system were measured between each diagonal pair. The toler-
ance for maximum subspace angle was chosen as θmax = 100o, and the grid was
automatically remeshed whenever the sum of the distance between opposite pairs
exceeded the tolerance value as explained in the previous section. At the end of
the offline adaptive sampling scheme, thirteen new sample points were added to
the previously selected grid as indicated by blue dots on the 2D map shown in
Fig. 7.9.

Figure 7.9: 1D Reaction-Diffusion model: Initial and adaptive grid samples at the
end of adaptive sampling scheme. The sum of subspace angles of the diagonal
pairs is also mentioned

To validate the proposed adaptive scheme for a two-parameter system, a test
parameter value of (λtest = 1.244, δtest = 0.105) was randomly selected, and the
interpolated ROM was obtained from the adaptive grid and compared with ROM
via the initial grid. A directly reduced model via NLMM-DEIM was also obtained
at the same test sample. Fig. 7.10 shows the qualitative comparison of the output
response for the full model and the reduced models. It is observed that the true



7.3. Numerical validation 126

response of the FOM was accurately replicated by both the interpolated ROMs.
However, the approximating quality of the interpolated ROM obtained via the
adaptive sampling scheme is more than the ROM obtained by regular sampling.
This is demonstrated in Fig. 7.11 where the relative L2-norm errors between FOM
and the different interpolated ROMs are plotted for 100 different query points in
parametric region. The ROMs obtained via adaptive grid naturally yields a better
approximation since these values were adaptively refined.

Figure 7.10: 1D Reaction-Diffusion model: Comparison of the output response for
test parameters λtest = 1.244, δtest = 0.105

Figure 7.11: 1D Reaction-Diffusion model: Comparison of the relative L2 norm
error between FOM and interpolated ROMs



7.3. Numerical validation 127

Nonlinear RC ladder

Finally, we considered the nonlinear analog RC circuit example from Ref. [61]
to illustrate the adaptive sampling scheme. The circuit, given in Fig. 7.12, has
a chain of strong nonlinear diodes together with resistors and capacitors. This
model is a variant of transmission line model discussed in Sec. 4.3.3. Kirchhoff’s
nodal law and current equations were used to derive the state equations for this
system. An equation for ith interior node is given as:

C
dvi
dt

=
1

R
(vi−1 − vi)−

1

R
(vi − vi+1)

+ Id

[
eα(vi−1−vi) − eα(vi−vi+1)

]
.

(7.5)

The nodal voltages are selected as the state-variables x(t) = [v1 v2 ... vN ]
T . The

input is the current source u(t) = i(t) and the output is voltage measured at the
first node. The state-space model is given as:

E
dx

dt
= Gx(t) + (Dx(t)) +Bu(t), (7.6)

where E is the capacitance matrix, G is the conductance matrix, D(x) is a vector
valued nonlinear function for the diodes and B = [1 0...0]T is the input vector.
The various parameters of the model and reduction are mentioned in Table 7.5)

Table 7.5: Nonlinear Transmission Line: Parameters used

Method Parameters

Full model n = 1000, R = C = 1, t ∈ [0, 10s],µ1,µ2 ∈ P := [40, 43]× [0.8, 1]
POD r = 15, ns = 250
DEIM md = 30
Adaptive
Sampling

θmax = 100o

Test Input u(t) = 0.5(1 + cos(πt)/5)

The constitutive relation for diodes is given as:

id(v) = Id(e
αv − 1), (7.7)

with α = 1/vt and vt is the threshold voltage. Corresponding to vt = 25mV , the
nominal values for diodes is Id = 0.1nA and α = 40. The nonlinear analog circuit
was parameterized both in Id and α with a range µ1,µ2 ∈ P := [40, 43]× [0.8, 1].
Like the previous test model, nine initial test samples were selected with a uniform
spacing, shown by red dots in Fig. 7.13, and corresponding to each sample, an
expensive high-fidelity model of size n = 1000 was obtained. The reduced-order
models of size (r = 15) were constructed with 250 time-snapshots within a POD
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scheme, whereas the nonlinearity was captured using md = 30 DEIM indices. The
maximum subspace tolerance was chosen as θmax = 100o for initialization of the
adaptive sampling scheme. Fig. 7.13 shows the final adaptive grid for the nonlinear
RC circuit along-with the sum of subspace angles of the diagonal pairs. The initial
grid was adaptively re-meshed based on the sensitivity of the parametric variations
captured in terms of the distance between the subspaces. The adaptive scheme
terminated when all the subspace angles between the neighboring samples were
smaller than the desired set tolerance value.

Figure 7.12: Nonlinear RC ladder network

Figure 7.13: Nonlinear RC circuit: Initial and adaptive grid samples. The sum of
subspace angles of the diagonal pairs is also mentioned
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The online testing was performed for a test parameter of value αtest = 40.10
and Idtest = 0.911nA corresponding to the region where the adaptive meshing was
performed. As such, the interpolated ROMs corresponding to both initial and
final grid were obtained along-with the directly-reduced model via POD-DEIM.
The comparison of the output responses of the ROMs against the full-order model
is shown in Fig. 7.14. It is clearly seen that the interpolated ROM via final grid
effectively captures the response with a high level of accuracy just like the directly
obtained reduced model. On the other hand, the interpolated ROM obtained from
the initial grid produced large errors due to inefficient sampling. Moreover, the
quantitative comparison for 100 different test parameters in terms of the relative
L2 norm errors with respect to FOM is presented in Fig. 7.15. It is seen that the
L2 error or ROMs obtained from adaptive grid had dropped by several orders of
magnitude.

Figure 7.14: Nonlinear RC circuit:Comparison of the output response for αtest =
40.10, Idtest = 0.911nA. FOM size: n = 1000, ROM size: r = 15, number of DEIM
indices = 30

Figure 7.15: Nonlinear RC circuit: Comparison of the relative L2 norm error
between FOM and interpolated ROMs
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7.4 Discussions

In this section, we discuss some of the aspects the proposed sampling scheme.

Advantages of the proposed scheme

The automatic adaptive sampling scheme for nonlinear systems described herein
avoids the computation of a new FD model every time a new parameter is in-
troduced. The models are being calculated only at those parameters where the
dynamic response changes significantly, measured by observing the change in at-
tributes of projection subspaces. The subspace angles are continuously tracked
and are refined automatically whenever they exceed a pre-defined tolerance ensur-
ing that the same FD model is used. It should be noted that the whole process is
performed in the offline stage before the matrix interpolation in the online stage
begins.

Since this scheme uses the information from the system itself to resample the
parametric domain; it can be used to reduce the substantial offline computational
costs associated when a finely sampled training set is used in the reduced basis
method. A course training set can be first resampled based on the proposed
scheme and then through a greedy algorithm to obtain the approximated solution
manifold of the original system as carried out by Benner et al. [52] for optimization
of batch chromatography.

Selection of subspace tolerance angle θmax

The selection of the maximum subspace tolerance θmax is problem-specific in na-
ture. A small tolerance value will result in a finer mesh and hence a small inter-
polation error. However, this also increases the associated offline computational
time as more FD models will be involved. On the other hand, a larger tolerance
value will result in a few FD models with increased interpolation errors. Thus,
depending upon the application and the nonlinear model at hand, the value of
θmax can be chosen.

Choice of reduction scheme used and size of ROM

The proposed sampling scheme is independent of the choice of reduction scheme
involved, which has been validated in this study using different reduction ap-
proaches. However, we advocate using the NLMM method as it avoids the need
to obtain the time-snapshots of the FOM and instead constructs the local projec-
tion basis in a “simulation-free” environment. Furthermore, it is advised to use
hyperreduction schemes like DEIM, EIM, GNAT, etc., to evaluate the underlying
nonlinearity efficiently.

More accurate FD models and larger ROMs can more accurately capture the
dynamics and improve the interpolated ROM quality. However, this will also result
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in the enormous offline computation of the projection basis. Methods like SVD
can be used to calculate dominant singular values that capture the most variance
of the high-fidelity model and provide an estimate for appropriate truncation of
the local basis.

Computational efficiency

The efficiency of the proposed scheme was demonstrated in terms of error norms
in this study. Since the adaptive method works in an offline-online manner, the
efficiency can also be shown in terms of overall CPU times. Although the offline
cost is usually not taken into consideration for a PMOR scheme, it is typically
high, especially for time-dependent PDEs. The CPU times recorded for all tests
are presented in Table 7.6 for reference.

Table 7.6: CPU times for different test models

S.No. Model offline time (s) online time (s)

1. Burgers’ equation 911.23 4.12
2. MEMS microswitch 1148.75 8.31

3.
Reaction-Diffusion
equation

1225.79 13.56

4. Nonlinear RC network 956.31 7.76

The offline time includes the time required to obtain the FD models at selected
samples along-with obtaining local projection basis. Online time includes the
interpolation time of the ROMs.

Curse of dimensionality for higher dimension spaces

The proposed scheme can be extended to higher-dimensional parameter setup.
However, it becomes more involved as it may require a considerable adaptation
since full grids become computationally infeasible in such a scenario. As such,
adaptive sparse grids can be employed [229]. Currently, the proposed adaptive
scheme can be used for parameter dimensions up to two.

Limitations in the proposed sampling scheme

The proposed scheme currently has certain limitations such as stability preser-
vation, lack of global error bounds, infeasibility for a much higher dimensional
parametric space. These limitations can be improved in a future research.



7.5. Chapter Summary 132

7.5 Chapter Summary

This chapter studied the adaptive parameter sampling scheme for nonlinear sys-
tems. We presented an overview of some notable sampling schemes and dis-
cussed their shortcoming. Then, we introduced an adaptive sampling strategy
for nonlinear systems based on the system-theoretic measures. We combined the
matrix-interpolatory approach for nonlinear systems with adaptively choosing the
sampling points for obtaining local reduced models. The distance between the
subspaces was used to identify the most sensitive zones of the parametric space.
Simultaneously, the whole process was automated to directly obtain a reduced
model for a new parametric variation outside the training set. The algorithm
was tested on various benchmark nonlinear systems showing satisfactory results.
The proposed scheme is beneficial, especially where parameter dependency in the
model is implicit, like the finite element method.
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Chapter 8

Concluding Remarks

The idea of automatically extracting reduced-order models from large-scale dy-
namical systems is a central challenge. By and large, reduced-order modeling via
moment-matching techniques for linear systems is relatively well explored, and
a suite of efficient algorithms is available at our disposal. However, construct-
ing optimal approximations of the large-scale models while preserving passivity
or stability remains elusive. Furthermore, technical systems arising while mod-
eling complex fluids or simulation of electronics circuits are inherently nonlinear.
Thus employing nonlinear reduction techniques directly to these systems is desir-
able. The nonlinear model order reduction area, though witnessed some notable
achievements in the past few years, however some issues (as discussed in this the-
sis) remains challenging. Moment-matching-based MOR methods have seen a long
history. Various modifications and advancements have appeared from time to time
to make this technique a more robust platform for treating problems in large-scale
settings. Some of these modifications are currently a work in progress, whereas
others are yet to happen.

In essence, this thesis examines the problem of nonlinear model order reduc-
tion using system-theoretic measures. In this respect, we have proposed some
efficient reduction frameworks for nonlinear state-space models of time-dependent
PDEs. Notably, we show how NLMM, and its variants, can be used to obtain
a “snapshot-free” ROM architecture undergoing implicit moment-matching with
the original high-dimensional system. Several numerical simulations are presented
to realize the proposed observations. Then we also discussed the extension of these
techniques to systems in second-order state-space form. In the realm of nonlinear
parametric state-space models, we have proposed a numerical framework for para-
metric reduction using the matrix interpolation method. We have also introduced
a sampling strategy to enhance the approximating qualities of parametric ROMs.

In this chapter, we present a summary of the overall contributions of the thesis,
draw conclusions from the most important results, and discuss the scope for future
work.

134
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8.1 Summary and conclusions

Chapter 2

1. The problem of MOR in linear systems has reached a considerable level of
maturity, as reflected by several books and monographs.

2. Moment-matching-based MOR methods have emerged as a vibrant and most
broadly used approach to treat models of large-scale nature. This class of
methods is based on Krylov subspace methods and is suitable for a wide
range of engineering applications.

3. The success of interpolatory methods lies in the fact that a few matrix-
vector multiplications are involved, and the complexity of resulting models
is roughly O(nk2) for a sparse matrix A ∈ Rn×n where k is the number of
expansion points.

4. Classical frequency-domain interpretation of moment-matching corresponds
to interpolating the transfer functions of FOM and ROM at specific shifts,
where the time-domain interpretation of moment-matching corresponds to
the interpolation of the steady-state responses of the FOM and ROM.

5. Interconnecting a linear signal generator with FOM corresponds to excit-
ing the FOM with exponential inputs. Using a nonlinear signal generator
corresponds to exciting the FOM with user-defined inputs.

Chapter 3

1. The method of using linear projection for reducing nonlinear systems is well
understood. Famous methods like POD, TPWL, quadratic methods perform
satisfactorily for a large number of nonlinear systems. However, care must be
taken while selecting the training inputs, linearization points, and temporal
snapshots.

2. Using a nonlinear Petrov-Galerkin projection offers a more accurate approx-
imation of the lower-dimensional subspace; however, this complicates the
structure of the ROM.

3. Classical hyper-reduction methods like EIM, or POD-tailored DEIM, gappy
POD, etc., can be used “on-top-of” the usual reduction methods for ob-
taining nearly optimal reconstructions of nonlinear terms of the original
high-dimensional system.
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Chapter 4

1. Nonlinear moment-matching has emerged as a promising system-theoretic
reduction technique for nonlinear systems since it doesn’t involve expen-
sive FOM simulations but solves the underlying nonlinear Sylvester PDE to
obtain the projection basis.

2. Since the nonlinear Sylvester PDE is expensive to simulate, an approximated
version is solved instead using some numerical simplifications.

3. We have used NLMM with DEIM to obtain a compact ROM structure. This
framework is demonstrated on several benchmark examples and compared
with simulation-based methods like POD.

4. We have also used NLMM with DMD to obtain a non-intrusive reduction
framework. This technique produces a higher computational savings than
POD-DEIM which has been demonstrated through several examples.

Chapter 5

1. Models emerging from mechanical and electrical systems usually have a
second-order structure, and, as such structure-preserving ROMs are highly
desired.

2. Towards this direction, we have extended the NLMM-DEIM framework to
second-order systems to obtain reduced models that preserve the structure
of the original model.

3. SO-NLMM-DEIM has been implemented on power system models, and the
resulting reduced models satisfactorily capture the strong nonlinear tran-
sients of the original model.

Chapter 6

1. Many technical systems include parameters that may be considered as de-
terministic or stochastic variables of interest.

2. The goal of PMOR approaches is to obtain a reduced model approximating
the response of the full-order system with high fidelity over a wide range of
parametric variations.

3. In this context, we have presented an offline-online PMOR framework using
the matrix interpolatory scheme for nonlinear systems. The method has
been tested on several nonlinear models with parametric dependencies.
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Chapter 7

1. One of the central challenges in PMOR is parametric sampling. The need
for pMOR methods with automatic parameter sampling is strongly aimed.
Methods like Greedy sampling [234], POD inspired methods [200, 136] or the
rational interpolation-based methods [112] are the popular choices. However,
more sophisticated sampling approaches such as problem-aware adaptive
search are mandated as parametric space grows.

2. Using the notion of distance between subspaces, an adaptive sampling method
for PMOR has been proposed. Numerical simulations have been carried out
to test the proposed scheme for a single and two-parameter setup. The
results show that the adaptive sampling has significantly increased the ap-
proximating qualities of the parametric ROMs.

8.2 Future perspectives

Several other perspectives have already been mentioned throughout the thesis. In
what follows, we enlist some promising directions for possible future research.

1. The idea of output krylov subspace based NLMM as proposed in Maria et al.
[88] can be further pursued to obtain a two-sided reduction method. Some
critical system properties such as stability and passivity can be examined
from a theoretical and numerical perspective.

2. The parameterized families of ROMs achieving moment-matching mentioned
in Chapter 3 can be further exploited to enforce specific additional properties
such as matching asymptotic stability, matching prescribed relative degree,
passivity constraints.

3. This thesis uses reduction methods that project the governing equations onto
a linear subspace approximation of the original state-space. This restricts the
states to evolve in a linear subspace and hence imposes a limitation on the
accuracy of the resulting ROM. This effect is more pronounced for problems
with slow decaying Kolmogorov n-width, such as in advection-dominated
regimes. It is recommended to project the underlying dynamical system
onto nonlinear manifolds for such problems. To overcome the Komgolorov
width of the problem, deep convolutional autoencoders to learn the trial
manifolds can be an exciting research direction.

4. Dynamic equivalencing in power systems is a promising area of research.
With the anticipated transition to smart-grids, there will be additional fluc-
tuations in the system from new components such as plug-in electric vehicles,
intermittent energy sources, etc. Such fluctuations will have an impact on
the synchronization stability of power grids and instabilities caused by the
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so-called dynamic bifurcation problems [57]. Though some notable reduc-
tion techniques for power systems have been proposed in the past based
on Krylov subspace [78, 262], balanced truncation [245] and extended bal-
anced truncation [280], however, some open problems remain unexplored.
This includes preservation of physical meanings of state variables, model-
free approaches for prediction, and developing software implementation in
proprietary and dedicated power system analysis tools.

5. Adaptive parametric sampling from Chapter 7 can be further extended to a
higher dimension of parametric space to test more practical systems arising
from all engineering domains.



Appendix A

Detailed description of the nonlinear
models

A.1 1D Nonlinear Burgers’ equation

A =


a b 0 · · · 0
b a b · · · 0
0 b a · · · 0
...

...
...

. . . b
0 0 · · · b c

 ∈ Rn×n, B =


b
0
0
...
0

 ∈ Rn×1, N =


f 0 · · · 0
0 0 · · · 0
...

...
. . .

...
0 0 · · · 0

 ∈ Rn×n

C =
[
0 0 · · · 1

]
∈ R1×n, H =


d 0 0 · · · 0 0 0 · · · 0
0 e 0 · · · 0 e d · · · 0
0 0 0 · · · 0 0 e · · · 0
...

...
...

. . .
...

...
...

. . . 0
0 · · · · · · · · · 0 0 · · · · · · d

 ∈ Rn×n2

where

a =
−2ν
h2

, b =
ν

h2
, c =

−ν
h2

, d =
−1
h

, e =
1

2h
, f =

1

h
, h =

1

1 + n
, ν =

1

Re
, n = order of the system

A.2 2D Nonlinear Burgers’ equation

The spatial domain is discretized uniformly into nx − 1 and ny − 1 intervals in x
and y direction, respectively for a nx × ny grid. Now, using a centered-difference
scheme for the first and second-order spatial derivatives, we arrive at the following
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equations:

dui,j

dt
+
ui+1,j − ui−1,j

2dx
ui,j +

ui,j+1 − ui,j−1

2dy
vi,j =

1

Redx2
(ui+1,j − 2ui,j + ui−1,j) +

1

Redy2
(ui,j+1 − 2ui,j + ui,j−1)

(A.1a)

dvi,j

dt
+
vi+1,j − vi−1,j

2dx
ui,j +

ui,j+1 − ui,j−1

2dy
vi,j =

1

Redx2
(vi+1,j − 2vi,j + vi−1,j) +

1

Redy2
(vi,j+1 − 2vi,j + vi,j−1)

(A.1b)

where

xj = jdx,yi = idy,uij = uxi,yj ,t,vij = v(xi,yj, t), dx =
b− a

nx − 1
, dy =

d− c

ny − 1
.

A more compact notation for Equation (A.1) is given as:

dU

dt
+ f1(U,V)− 1

2dx
BulU−

1

2dy
BubV =

1

Redx2
(D1U+ b1u) +

1

Redy2
(D2U+ b2u) (A.2a)

dV

dt
+ f2(U,V)− 1

2dx
BvlU−

1

2dy
BvbV =

1

Redx2
(D1V + b1v) +

1

Redy2
(D2V + b2v) (A.2b)

where

U = (u1,1,u2,1, ...,un,1,u1,2, ...,un,2, ...,u1,n, ...un,n)
T

V = (v1,1,v2,1, ...,vn,1,v1,2, ...,vn,2, ...,v1,n, ...vn,n)
T

and the nonlinear mappings f1(U,V) and f2(U,V) are defined as:

f1(U,V) =
1

2dx
MU. ∗U+

1

2dy
NU. ∗V, (A.3a)

f2(U,V) =
1

2dx
MV. ∗U+

1

2dy
NV. ∗V (A.3b)

and

M =

 M1

. . .

M1


(ny−2)×(ny−2)

,M1 =

 0 1

−1 . . . 1
−1 0


(nx−2)×(nx−2)
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Also,

Bul = diag(kron(u(1, 2 : ny − 1), [1, 0, 0, ..., 0]1×(nx−2))),

Bub = diag(kron([1, 0, 0, ..., 0]1×(ny−2),u(2 : nx − 1), 1)),

b1u = (u1,2, 0, ..., 0,uny,2,u1,3 , 0, ...unx−1,ny)
T

b2u = [u(1, 2 : ny − 1)T , 0, ..., 0,u(nx, 2 : ny − 1)T ]T

are used to define the boundary conditions where:

D1 =

 D11

. . .

D11


(ny−2)×(ny−2)

,D2 =

 −2E E

E
. . . E
E −2E


(ny−2)×(ny−2)

D11 =

 −2 1

1
. . . 1
1 −2


(nx−2)×(nx−2)

, N =

 E

−E . . .

−E E


where E is (nx−2)× (ny−2) identity matrix. Similarly, b1v,b2v,Bvl and Bvb can
be defined for vi,j. The initial conditions and boundary conditions for this case
are taken from Ref. [115] given as.

u(x,y, t) =
3

4
− 1

4[1 + exp((−4x+ 4y − t)Re/32)]
(A.4a)

v(x,y, t) =
3

4
+

1

4[1 + exp((−4x+ 4y − t)Re/32)]
(A.4b)
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SANNE, 2014.

[82] Chen, Y. Model order reduction for nonlinear systems. PhD thesis, Mas-
sachusetts Institute of Technology, 1999.



Bibliography 149

[83] Chen, Y., Balakrishnan, V., Koh, C.-K., and Roy, K. Model reduc-
tion in the time-domain using laguerre polynomials and krylov methods. In
Proceedings 2002 Design, Automation and Test in Europe Conference and
Exhibition (2002), IEEE, pp. 931–935.

[84] Chiprout, E., and Nakhla, M. S. Asymptotic waveform evaluation. In
Asymptotic Waveform Evaluation. Springer, 1994, pp. 15–39.

[85] Choi, Y., and Carlberg, K. Space–time least-squares petrov–galerkin
projection for nonlinear model reduction. SIAM Journal on Scientific Com-
puting 41, 1 (2019), A26–A58.

[86] Chow, J. H. Power system coherency and model reduction, vol. 84.
Springer, 2013.

[87] Constantin, P., Foias, C., Nicolaenko, B., and Temam, R. Integral
manifolds and inertial manifolds for dissipative partial differential equations,
vol. 70. Springer Science & Business Media, 2012.

[88] Cruz Varona, M., Pak, M., and Lohmann, B. Towards output krylov
subspace-based nonlinear moment matching. In Joint 8th IFAC Symposium
on Mechatronic Systems and 11th IFAC Symposium on Nonlinear Control
Systems, Vienna, Austria (2019).

[89] Cullum, J. K., and Willoughby, R. A. Lanczos algorithms for large
symmetric eigenvalue computations: Vol. I: Theory. SIAM, 2002.

[90] Daneshpajooh, H., and Zand, M. M. Semi-analytic solutions to oscilla-
tory behavior of initially curved micro/nano systems. Journal of Mechanical
Science and Technology 29, 9 (2015), 3855–3863.

[91] Degroote, J., Vierendeels, J., and Willcox, K. Interpolation
among reduced-order matrices to obtain parameterized models for design,
optimization and probabilistic analysis. International Journal for Numerical
Methods in Fluids 63, 2 (2010), 207–230.

[92] Desai, U., and Pal, D. A transformation approach to stochastic model
reduction. IEEE Transactions on Automatic Control 29, 12 (1984), 1097–
1100.

[93] Dong, N., and Roychowdhury, J. Piecewise polynomial nonlinear
model reduction. In Proceedings 2003. Design Automation Conference
(IEEE Cat. No. 03CH37451) (2003), IEEE, pp. 484–489.

[94] Drmac, Z., and Gugercin, S. A new selection operator for the discrete
empirical interpolation method—improved a priori error bound and exten-
sions. SIAM Journal on Scientific Computing 38, 2 (2016), A631–A648.



Bibliography 150

[95] Drohmann, M., Haasdonk, B., and Ohlberger, M. Adaptive re-
duced basis methods for nonlinear convection–diffusion equations. In Finite
Volumes for Complex Applications VI Problems & Perspectives. Springer,
2011, pp. 369–377.

[96] Druskin, V., and Simoncini, V. Adaptive rational krylov subspaces
for large-scale dynamical systems. Systems & Control Letters 60, 8 (2011),
546–560.

[97] Druskin, V., Simoncini, V., and Zaslavsky, M. Solution of the time-
domain inverse resistivity problem in the model reduction framework part i.
one-dimensional problem with siso data. SIAM Journal on Scientific Com-
puting 35, 3 (2013), A1621–A1640.

[98] Eckart, C., and Young, G. The approximation of one matrix by another
of lower rank. Psychometrika 1, 3 (1936), 211–218.

[99] Eftang, J. L., and Stamm, B. Parameter multi-domain ‘hp’empirical
interpolation. International Journal for Numerical Methods in Engineering
90, 4 (2012), 412–428.

[100] Eid, R. Time domain model reduction by moment matching. PhD thesis,
Technische Universität München, 2009.

[101] Elman, H. C., and Liao, Q. Reduced basis collocation methods for
partial differential equations with random coefficients. SIAM/ASA Journal
on Uncertainty Quantification 1, 1 (2013), 192–217.

[102] Enns, D. F. Model reduction with balanced realizations: An error bound
and a frequency weighted generalization. In The 23rd IEEE Conference on
Decision and Control (1984), IEEE, pp. 127–132.

[103] Everson, R., and Sirovich, L. Karhunen–loeve procedure for gappy
data. JOSA A 12, 8 (1995), 1657–1664.

[104] Faedo, N., Piuma, F. J. D., Giorgi, G., and Ringwood, J. V.
Nonlinear model reduction for wave energy systems: a moment-matching-
based approach. Nonlinear Dynamics 102, 3 (2020), 1215–1237.

[105] Fahl, M., and Sachs, E. W. Reduced order modelling approaches to
pde-constrained optimization based on proper orthogonal decomposition.
In Large-scale PDE-constrained optimization. Springer, 2003, pp. 268–280.

[106] Farhat, C., Avery, P., Chapman, T., and Cortial, J. Dimensional
reduction of nonlinear finite element dynamic models with finite rotations
and energy-based mesh sampling and weighting for computational efficiency.
International Journal for Numerical Methods in Engineering 98, 9 (2014),
625–662.



Bibliography 151

[107] Feldmann, P., and Freund, R. W. Efficient linear circuit analysis
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[132] Gragg, W. B., and Lindquist, A. On the partial realization problem.
Linear Algebra and its Applications 50 (1983), 277–319.

[133] Gray, W. S., and Mesko, J. General input balancing and model reduc-
tion for linear and nonlinear systems. In 1997 European Control Conference
(ECC) (1997), IEEE, pp. 2862–2867.

[134] Grepl, M. A. Reduced-basis approximation a posteriori error estimation
for parabolic partial differential equations. PhD thesis, Massachusetts Insti-
tute of Technology, 2005.

[135] Grepl, M. A., Maday, Y., Nguyen, N. C., and Patera, A. T. Effi-
cient reduced-basis treatment of nonaffine and nonlinear partial differential
equations. ESAIM: Mathematical Modelling and Numerical Analysis 41, 3
(2007), 575–605.

[136] Grepl, M. A., and Patera, A. T. A posteriori error bounds for reduced-
basis approximations of parametrized parabolic partial differential equa-
tions. ESAIM: Mathematical Modelling and Numerical Analysis 39, 1 (2005),
157–181.

[137] Grimme, E. Krylov projection methods for model reduction. PhD thesis,
University of Illinois at Urbana Champaign, 1997.

[138] Grimme, E. J., Sorensen, D. C., and Van Dooren, P. Model re-
duction of state space systems via an implicitly restarted lanczos method.
Numerical algorithms 12, 1 (1996), 1–31.

[139] Gu, C. QLMOR: A projection-based nonlinear model order reduction ap-
proach using quadratic-linear representation of nonlinear systems. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems
30, 9 (2011), 1307–1320.

[140] Gugercin, S. An iterative rational krylov algorithm (IRKA) for optimalH2

model reduction. In Householder Symposium XVI, Seven Springs Mountain
Resort, PA, USA (2005).

[141] Gugercin, S., Antoulas, A. C., and Beattie, C. H2 model reduction
for large-scale linear dynamical systems. SIAM journal on matrix analysis
and applications 30, 2 (2008), 609–638.



Bibliography 154

[142] Gugercin, S., Beattie, C., and Antoulas, A. Rational krylov meth-
ods for optimal H2 model reduction. submitted for publication (2006).

[143] Gugercin, S., and Li, J.-R. Smith-type methods for balanced trunca-
tion of large sparse systems. In Dimension reduction of large-scale systems.
Springer, 2005, pp. 49–82.

[144] Gugercin, S., Sorensen, D. C., and Antoulas, A. C. Amodified low-
rank smith method for large-scale lyapunov equations. Numerical Algorithms
32, 1 (2003), 27–55.

[145] Gugercin S, S. T., and S, W. Model reduction of descriptor systems by
interpolatory projection methods. SIAM Journal on Scientific Computing
35 (2013), 1010–1033.

[146] Gunupudi, P. K., and Nakhla, M. S. Model-reduction of nonlinear
circuits using krylov-space techniques. In Proceedings of the 36th annual
ACM/IEEE Design Automation Conference (1999), pp. 13–16.

[147] Haasdonk, B., Dihlmann, M., and Ohlberger, M. A training set
and multiple bases generation approach for parameterized model reduction
based on adaptive grids in parameter space. Mathematical and Computer
Modelling of Dynamical Systems 17, 4 (2011), 423–442.

[148] Halevi, Y. Frequency weighted model reduction via optimal projection.
In 29th IEEE Conference on Decision and Control (1990), IEEE, pp. 2906–
2911.

[149] Hesthaven, J. S., Rozza, G., Stamm, B., et al. Certified reduced basis
methods for parametrized partial differential equations, vol. 590. Springer,
2016.

[150] Hinze, M., and Volkwein, S. Proper orthogonal decomposition surro-
gate models for nonlinear dynamical systems: Error estimates and subopti-
mal control. In Dimension reduction of large-scale systems. Springer, 2005,
pp. 261–306.

[151] Hochman, A., Vasilyev, D. M., Rewienski, M. J., and White, J. K.
Projection-based nonlinear model order reduction. System-level modeling of
MEMS, advanced micro & nanosystems. Wiley-VCH (2013).

[152] Horn, R. A., and Johnson, C. R. Matrix analysis. Cambridge Univer-
sity Press, 2012.

[153] Hovland, S., Gravdahl, J. T., and Willcox, K. E. Explicit model
predictive control for large-scale systems via model reduction. Journal of
Guidance, Control, and Dynamics 31, 4 (2008), 918–926.



Bibliography 155

[154] Ionescu, T. C., and Astolfi, A. Families of reduced order models that
achieve nonlinear moment matching. In 2013 American Control Conference
(2013), IEEE, pp. 5518–5523.

[155] Ionescu, T. C., and Astolfi, A. Nonlinear moment matching-based
model order reduction. IEEE Transactions on Automatic Control 61, 10
(2015), 2837–2847.

[156] Ionescu, T. C., Astolfi, A., and Colaneri, P. Families of moment
matching based, low order approximations for linear systems. Systems &
Control Letters 64 (2014), 47–56.

[157] Isidori, A. Nonlinear Control Systems. Springer Science & Business Media,
Third Edition, 1995.

[158] Isidori, A., and Byrnes, C. I. Output regulation of nonlinear systems.
IEEE transactions on Automatic Control 35, 2 (1990), 131–140.

[159] Jaimoukha, I. M., and Kasenally, E. M. Oblique production methods
for large scale model reduction. SIAM Journal on Matrix Analysis and
Applications 16, 2 (1995), 602–627.

[160] Jaimoukha, I. M., and Kasenally, E. M. Implicitly restarted krylov
subspace methods for stable partial realizations. SIAM Journal on Matrix
Analysis and Applications 18, 3 (1997), 633–652.

[161] Jonckheere, E., and Silverman, L. A new of invariants for linear
system-application to reduced order compensator design. IEEE Transactions
on Automatic Control 28 (1983), 953–964.

[162] Jordan, D., Smith, P., and Smith, P. Nonlinear ordinary differential
equations: an introduction for scientists and engineers, vol. 10. Oxford
University Press on Demand, 2007.

[163] Kaczynski, J., Ranacher, C., and Fleury, C. Computationally ef-
ficient model for viscous damping in perforated mems structures. Sensors
and Actuators A: Physical 314 (2020), 112201.

[164] Kawano, Y., and Scherpen, J. M. Model reduction by differential
balancing based on nonlinear hankel operators. IEEE Transactions on Au-
tomatic Control 62, 7 (2016), 3293–3308.

[165] Kellems, A. R., Roos, D., Xiao, N., and Cox, S. J. Low-dimensional,
morphologically accurate models of subthreshold membrane potential. Jour-
nal of Computational Neuroscience 27, 2 (2009), 161.



Bibliography 156

[166] Kerns, K. J., and Yang, A. T. Preservation of passivity during rlc
network reduction via split congruence transformations. IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems 17, 7 (1998),
582–591.

[167] Kim, H. M., and Craig Jr, R. R. Structural dynamics analysis using an
unsymmetric block lanczos algorithm. International journal for numerical
methods in engineering 26, 10 (1988), 2305–2318.

[168] Kim, H. M., and Craig Jr, R. R. Computational enhancement of an
unsymmetric block lanczos algorithm. International journal for numerical
methods in engineering 30, 5 (1990), 1083–1089.

[169] Konkel, Y., Farle, O., Sommer, A., Burgard, S., and Dyczij-
Edlinger, R. A posteriori error bounds for krylov-based fast frequency
sweeps of finite-element systems. IEEE Transactions on Magnetics 50, 2
(2014), 441–444.

[170] Koopman, B. O. Hamiltonian systems and transformation in hilbert space.
Proceedings of the national academy of sciences of the united states of amer-
ica 17, 5 (1931), 315.

[171] Krack, M., and Gross, J. Harmonic balance for nonlinear vibration
problems. Springer, 2019.

[172] Krajewski, W., Lepschy, A., Redivo-Zaglia, M., and Viaro, U.
A program for solving the l 2 reduced-order model problem with fixed de-
nominator degree. Numerical Algorithms 9, 2 (1995), 355–377.

[173] Krener, A. J. The construction of optimal linear and nonlinear regulators.
In Systems, Models and Feedback: Theory and Applications. Springer, 1992,
pp. 301–322.

[174] Kunisch, K., and Volkwein, S. Control of the burgers equation by a
reduced-order approach using proper orthogonal decomposition. Journal of
optimization theory and applications 102, 2 (1999), 345–371.

[175] Kunisch, K., and Volkwein, S. Proper orthogonal decomposition for op-
timality systems. ESAIM: Mathematical Modelling and Numerical Analysis-
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